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Abstract
Consumer-grade solid-state drives (SSDs) guarantee very few
things upon a crash. Lacking a strong disk-level crash guaran-
tee forces programmers to equip applications and �lesystems
with safety nets using redundant writes and �ushes, which in
turn degrade the overall system performance. Although some
prior works propose transactional SSDs with revolutionized
disk interfaces to o�er strong crash guarantees, adopting
transactional SSDs inevitably incurs dramatic software stack
changes. Therefore, most consumer-grade SSDs still keep
using the standard block device interface.

This paper addresses the above issues by breaking the
impression that increasing SSDs’ crash guarantees are typ-
ically available at the cost of altering the standard block
device interface. We propose Order-Preserving Translation
and Recovery (OPTR), a collection of novel �ash translation
layer (FTL) and crash recovery techniques that are realized
internal to block-interface SSDs to endow the SSDs with
strong request-level crash guarantees de�ned as follows: 1) A
write request is not made durable unless all its prior write
requests are durable. 2) Each write request is atomic. 3) All
write requests prior to a �ush are guaranteed durable. We
have realized OPTR in real SSD hardware and optimized ap-
plications and �lesystems (SQLite and Ext4) to demonstrate
OPTR’s bene�ts. Experimental results show 1.27× (only Ext4
is optimized), 2.85× (both Ext4 and SQLite are optimized),
and 6.03× (an OPTR-enabled no-barrier mode) performance
improvement.

1 Introduction
Storage systems are constructed layerwise; thus the overall
system performance depends on an appropriate division
of labor between layers. For example, for applications and
�lesystems that run on top of �ash-based solid-state drives
(SSDs), if the underlying SSDs focus too much on optimizing
their own performance and maintain too weak guarantees
upon a crash or power loss (crash for short), programmers
are forced to equip the applications and �lesystems with
safety nets using redundant writes and �ushes [24,26,33,41],
which in turn complicate the overall system and degrade the
overall performance.

That being said, widely used, consumer-grade SSDs (base-
line SSDs for short) guarantee very few things upon a crash:
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Figure 1: OPTR SSD vs baseline and transactional SSDs.
Ext4optr and SQLiteoptr denote our optimized versions of Ext4
and SQLite, respectively. Ext4nb denotes Ext4 mounted with
the -o nobarrier option.

each individual sector that is written since the last �ush may
either be done or left undone, which means there is an enor-
mous set of post-crash states for applications and �lesystems
to handle. Lacking a strong disk-level crash guarantee has
caused deep, long-term consequences. For example, the or-
dering constraint among user data, metadata, journal, and
commit records should be enforced to prevent sensitive user
data and inconsistent states from being accidentally exposed.
However, disks are not obligated to preserve any write or-
der, and �lesystems are reluctant to use �ushes to enforce a
write order due to severe performance penalties. Therefore,
Linux Ext3 even turned o� �ushes for many years at the
risk of crash vulnerabilities [20]. Another alarming example
is that since the crash guarantees of underlying disks are
weak, various �lesystems struggle to provide a standardized
and strong crash guarantee at their level, and this struggle
consequently makes applications have di�culty ensuring
correct recovery from a crash. For example, LevelDB and Git
were recently found to contain many crash vulnerabilities
owing to this reason [39].

Despite many issues, SSDs with a weak crash guarantee
are still widely used for two reasons. First, the weak crash
guarantee has existed since the hard disk drive (HDD) era.
This design choice was unavoidable for optimizing HDD per-
formance and remains as a matter of course for optimizing
SSD performance. For example, HDDs were permitted to
freely reorder requests according to the position of pickup
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Figure 2: Usage modes of OPTR SSDs and their �lesystem and disk interfaces. fdatafence is our newly proposed �lesystem
primitive that incurs no �ush. More details on the original �ve fdatasync and the use of fdatasync are in Section 4.

heads to minimize seek and rotational latency, and thus, SSDs
are also allowed to reorder or parallelize requests to maxi-
mize their internal channel- and chip-level parallelism. The
second reason is that although novel SSDs with revolution-
ized interfaces that o�er transaction-level crash guarantees
(transactional SSDs for short) [28,32,37,40,44] have recently
been studied, the fact is that there has been a vast body of
software and systems developed based on a standard block
device interface (block interface for short, e.g., SATA). There-
fore, as shown in Figure 1, although transactional SSDs (±)
can potentially o�er much higher performance than baseline
SSDs (¬), only few systems can adopt such dramatic changes.
Not surprisingly, most consumer-grade SSDs keep using the
block interface, and thus, the bene�ts of transactional SSDs
are not widely available.

This paper addresses the above issues by breaking the
impression that increasing SSDs’ crash guarantees is typi-
cally available at the cost of altering the block interface. We
propose Order-Preserving Translation and Recovery (OPTR),
a collection of novel �ash translation layer (FTL) and crash
recovery techniques that are realized internal to a block-
interface SSD to endow the SSD with strong request-level
crash guarantees as de�ned as follows:

1. Pre�x Semantics: The SSD does not make a write re-
quest durable unless all the write requests received pre-
viously by the SSD are durable (stronger than baseline
SSDs).

2. Request Atomicity: Each write request received by
the SSD is atomic regardless of the request size (i.e.,
number of sectors) (stronger than baseline SSDs).

3. Flush Semantics: The SSD guarantees durability to all
write requests that are received prior to a �ush (identical

to baseline SSDs).
Figure 3 uses a four-sector SSD to demonstrate the strong

request-level crash guarantees. The four sectors initially store
four version numbers, 0, 0, 0, and 0, respectively. The SSD
receives four write requests and one �ush request before a
crash occurs. Each write request is speci�ed by its lba and
size in parentheses. We assume that write requests always
increment the version number(s) of the written sector(s). For
example, the �rst write request touches the �rst and second
sectors, and thus the four version numbers become 1, 1, 0,
and 0. As shown in the �gure, each sector of a baseline SSD
can exhibit two to three valid post-crash version numbers;
therefore, the baseline SSD can exhibit 2×2×3×3=36 valid
post-crash results. In comparison, an OPTR SSD guarantees
to complete write requests in order and atomically, and there
are only two write requests after the last �ush; therefore, the
number of valid results is signi�cantly con�ned to three.

The strong request-level crash guarantees and our inten-
tional choice to use a standard block interface bring several
bene�ts. First, for programmers who want to develop new
applications or �lesystems, since the crash guarantees of
OPTR SSDs are truly intuitive, the chance of making mistakes
decreases. Additionally, since OPTR signi�cantly con�nes
the number of valid post-crash states, testing or verifying
the correctness of a program becomes more manageable.
Second, in addition to developing new programs, it is also
simple for programmers to optimize existing applications
and �lesystems to bene�t from OPTR. For example, Ext4 and
SQLite resort to �ushes to realize barriers because barriers
are unavailable to most SSDs [45]. We refer to these �ushes
as unnecessary flushes. With OPTR’s strong request-level
crash guarantees, we can optimize Ext4 and SQLite to remove
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Figure 3: Post-crash states of OPTR SSDs vs. those of baseline
SSDs.

unnecessary �ushes (Section 4). The changes made to SQLite
and Ext4 code are minor, and the achieved performance is
signi�cant, as illustrated by  (optimizing Ext4 only) and ®
(optimizing both Ext4 and SQLite) in Figures 1 and 2. Finally,
all existing, unmodi�ed applications and �lesystems can still
run on OPTR SSDs, and this backward compatibility enables
an OPTR-enabled no-barrier mode as described as follows.

In the OPTR-enabled no-barrier mode, a �lesystem is
mounted with a no-barrier option (e.g., -o nobarrier for Ext4)
and run on top of an OPTR SSD, as illustrated by ¯ in Fig-
ures 1 and 2. In contrast to mounting the �lesystem with
the no-barrier option on a baseline SSD (° in Figure 1), this
mode achieves the best of both worlds, i.e., high performance
(which is the reason why Ext3 used to disable �ushes [20])
and consistency guarantees (because OPTR preserves order
without the need for explicit �ushes). This mode is practical
and useful for smartphones, consumer-grade computers, and
less-critical database systems such as SQLite [3] and some
key-value stores [18]1.

This work makes the following contributions.
• This is the �rst SSD work with strong request-level crash
guarantees and a standard block interface. We change
the impression that increasing SSDs’ crash guarantees
is typically available at the cost of altering the standard
block device interface. We present the address transla-
tion, garbage collection (GC), and crash recovery algo-
rithms internal to SSDs to achieve OPTR.

• We extend and restructure the FTL of an academic do-
main SSD project (OpenSSD [2]) to equip it with a write
cache as our baseline. This FTL implementation is more

1Note that this mode is not suitable for critical systems such as �nancial
transaction processing systems because it relaxes durability.

sophisticated and modularized.
• We extend the FTL mentioned above to realize OPTR.
• We develop a functional simulator that can simulate an

FTL given IO requests and crash events at high speed
to test whether the FTL can recover from a crash and
meet the OPTR requirement. We have validated this
simulator and our implemented FTLs against each other.
We anticipate that the simulator itself will be a useful
tool for future FTL research.

• We exploit the strong request-level crash guarantees by
optimizing the fsync primitive of Ext4 and newly propos-
ing an �ence primitive for Ext4. These two primitives
help to eliminate unnecessary �ushes. We also demon-
strate optimizing a database system, SQLite, to exploit
the two primitives.

The rest of this paper is organized as follows. Section 2
describes the background of SSDs. Section 3 presents the de-
tailed design and implementation of OPTR. Section 4 demon-
strates the �lesystem and application optimizations enabled
by OPTR. Section 5 shows the results of validating OPTR
using our developed functional simulator. Section 6 evaluates
OPTR’s gain and overhead. Section 7 analyzes the FTL in
more detail. Section 8 surveys related work, and Section 9
concludes this work.

2 Background
2.1 Flash Translation Layers
In the core of an SSD lies an FTL. FTLs are responsible for
translating a sequence of host-issued requests, including
write, read and �ush, into a sequence of �ash operations,
including page-program,page-read, and block-erase. Both read
and write requests specify the address range of the data at the
sector granularity; �ush instructs an SSD not to acknowledge
the host until the SSD persists all cached writes on stable
media.

Upon receiving a write request, the FTL segments the write
data into pages based on the given address range. A write re-
quest involves modi�cations to the logical-to-physical (L2P)
mapping table. Many mapping schemes have been proposed
(e.g., page-level, block-level, and hybrid) for various cost-
performance tradeo�s. This work is based on page-level
FTLs. Page-level FTLs divide the logical address space of
SSDs into pages, which are indexed by a logical page num-
ber (LPN). Each entry in the L2P table maps an LPN to the
location of a �ash page indexed by a physical page number
(PPN).

To handle a read request, the FTL translates the address
range into LPNs and performs L2P table lookups to obtain
the PPNs of the requested pages. If the cache happens to
have a requested page, the contents are returned to the host;
otherwise, a page-read is performed to retrieve the contents
from the �ash memory.

Flush requests are synchronous; thus, upon receiving a
�ush, the FTL must persist all dirty data in the write cache



and ensure no ongoing page-program operation exists before
returning a success acknowledgment to the host.

As �ash memory forbids in-place updates, overwriting
data is done by writing the updated data to a free page and
leaving the outdated data in the original page. A dedicated
routine, called GC, is designed to reclaim these invalid pages,
which store outdated data. The GC routine starts with choos-
ing a victim block based on, e.g., the greedy policy [29, 42].
Then, this routine performs a series of page-reads and page-
programs to relocate the valid data in the victim block. Fi-
nally, the victim block is erased and added to the free-block
list.

2.2 High-Performance Schemes
Modern SSDs achieve signi�cant performance mainly ow-
ing to the following three schemes: internal parallelism, re-
quest scheduling, and write caching. Note that these high-
performance schemes all break the write order.

SSDs typically consist of multiple independent internal
channels for transferring data and commands. Each channel
connects to multiple �ash chips. The internal parallelism
of SSDs comes from these channels and chips, which can
perform �ash operations independently.

The goals of request scheduling are to increase the num-
ber of parallelized �ash operations and to decrease the latency
of each request. The former can be achieved by reordering
requests to reduce resource con�icts [34]. The latter can be
achieved by prioritizing requests with lower latency [22, 27].

Write caching removes slow storage accesses from the
critical path. As the access speed of �ash memory is often
orders of magnitude slower than that of DRAM, most com-
mercial SSDs employ a DRAM-based write-back cache for
better performance. Another advantage of write caching is
write coalescing. Multiple writes targeting the same LPN
have the opportunity to be merged into one page-program
operation, resulting in higher throughput and longer �ash
lifetimes.

2.3 SSD Recovery
The recovery mechanism of SSDs rebuilds the L2P table
after a system crash. Some previous works have studied
SSD recovery [7, 8, 11, 17, 30]. Leaving LPN information in
the spare area of each written page during writes is the
most common strategy [7], and the L2P information can be
reconstructed after a crash by scanning this information.
As multiple physical pages may contain the same LPN, a
sequence number is often used to determine their validity.

The process of rebuilding the L2P table may need to read
the spare areas of an enormous number of pages, leading to
long recovery times. For an SSD with 512 GB capacity, assum-
ing that each page is 32 KB and reading 32 pages in parallel
takes 100 µs, reading the spare area of all the �ash pages can
cost up to three minutes, which is unacceptable in most situ-
ations. Therefore, optimization to reduce the recovery time
has been proposed. Birrell et al. store the abovementioned

per page recovery information in the last page of a block
when the block is fully written [8]. This design eliminates
the need to read an entire block. Bjorling et al. take partial
and full checkpoints of the L2P table and persist the images
in a reserved area [9]. During recovery, these images are
loaded as the initial L2P table, and pages written after the
latest checkpoint are subsequently remapped.

3 OPTR SSD Design
We realize the following �ve components internal to an
SSD to achieve strong request-level crash guarantees with-
out changing the standard block interface: 1) tracking the
completion of write requests to ensure request atomicity, 2)
tracking the coalescing between write requests, 3) periodic
mapping table checkpointing, 4) tracking the availability of
blocks for GC, and 5) order-preserving recovery.
3.1 Write Completion Tracking
Request atomicity is one of OPTR’s guarantees. To achieve
this coarse-grained atomicity, OPTR determines the comple-
tion and incompletion of each individual write request using
a simple strategy: a write request that involves N pages is
completed if and only if those N pages do exist in �ash after
a crash.

More speci�cally, OPTR leaves the following three kinds of
clues in the spare area of each written �ash page to facilitate
determining the completion of a write request afterward.
The �rst is a unique sequence number of the write request
(wid, an 8-byte integer) assigned by the FTL according to
the order in which the request is received. The second is the
size of the write request in number of pages (size, a 4-byte
integer). The third is the logical page number (lpn, a 4-byte
integer) of the written page.

To determine which writes are completed and which are
not, the recovery procedure divides �ash pages into groups
according to their write request identi�ers (wid), counts the
appearance of each wid, and then compares this count with
size for each write request. The entire write request is com-
pleted if and only if the count matches the request size.
3.2 Write Coalescing Tracking
Two or more write requests may coalesce in the write cache
of SSDs; we refer to the involved write requests as coalesced
write requests. This situation reduces the in-�ash appearance
count of wid of the involved write requests.

OPTR allows write coalescing to happen instead of avoid-
ing it. To this end, OPTR detects and records each coalesced
page. Each page in the write cache is tagged with a dirty
�ag, a wid tag, and a size tag. By doing so, whenever a dirty
cache page is overwritten, OPTR detects that a coalesced
page exists (and anticipates that the appearance of the corre-
sponding wid in �ash decrements). For each coalesced page,
OPTR records (in a DRAM bu�er) the request IDs of the two
involved write requests and the size of the prior write request.
For example, as shown in Figure 4, a coalescing record with
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“<3, 7>, 6” denotes that a prior write request whose ID is 3
coalesces with a later write request whose ID is 7, and the
size of the prior write request is 6 pages. If a write involves
multiple coalesced pages, multiple pieces of information are
recorded. A batch of coalescing records are committed to
�ash when the bu�er is full or when the SSD is requested
to perform a �ush (either issued externally by the host or
internally by OPTR mechanisms).

It is hard to de�ne the completion of each single write re-
quest that coalesces with other requests because the comple-
tion of multiple coalesced write requests needs to be atomic
(which OPTR guarantees). In contrast, it is relatively sim-
ple to de�ne incompletion as follows. Let Pi be the number
of pages whose wid = i, Di be the number of recorded
< x, y > pairs with x = i, and Sizei be the size of the
write request with wid = i. A coalesced write request with
wid = i is incomplete if Pi +Di < Sizei.

3.3 Mapping Table Checkpointing
The L2P mapping table is checkpointed to �ash to speed up
recovery. More speci�cally, we reserve the �rst few �ash
blocks of each �ash chip for checkpoints. OPTR keeps two
types of checkpoints, a full checkpoint and several incre-
mental checkpoints, as shown in Figure 5. The two types
of checkpoints di�er in that a full checkpoint snapshots the
entire L2P table, while an incremental checkpoint records
only the di�erences in the L2P table since the latest check-
point (either full or incremental). In addition to the L2P table,
both types of checkpoints record a seal page at the end of
a checkpoint that includes 1) the latest wid at the time the
checkpoint is made and 2) the PPNs of the next free �ash
pages at the time the checkpoint is made. OPTR employs
incremental checkpoints by default. When the �ash area for
storing incremental checkpoints is full, OPTR creates a new
full checkpoint and then clears the incremental checkpoints.
OPTR employs a shadow for the full checkpoint to ensure its
integrity, and the wid can be used to determine the recency
between the full and incremental checkpoints after a crash.
The PPNs of the next free �ash pages allow L2P updates after
the latest checkpoint to be retrievable. More speci�cally, for
each PPN, subsequent written pages in the same block are
available as pages within a block are sequentially written,
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Figure 5: Full and incremental checkpoints.

and the summary page of the block can direct OPTR to the
subsequent written block and so on. Then, the L2P updates
can be derived from the LPN information in the spare area
of these retrieved pages.
3.4 Garbage Collection
Flash pages that store outdated data are commonly consid-
ered invalid and useless, but it is these pages that OPTR lever-
ages to rollback a disk from a crash to an order-preserved
state. Thus, we enforce two constraints on the GC routine.
The �rst constraint forbids GC from reclaiming pages pro-
grammed after the latest checkpoint. Since OPTR determines
the completion of a write issued after the latest checkpoint
by the number of pages owned by the write, reclaiming pages
written prior to a �ush but after the latest checkpoint would
result in a �ush semantics violation.

The second constraint forces an internal �ush before per-
forming GC. This �ush ensures that every page being erased
by GC has a stable counterpart that can always survive across
a crash. To reduce the performance penalty of an internal
�ush, we amortize its cost by conducting GC to a batch of
blocks (16 blocks in our case).
3.5 Order-Preserving Recovery
The recovery process is divided into the following phases: 1)
recover the L2P table according to the latest full checkpoint,
2) sequentially incorporate the L2P di�erences recorded in
the incremental checkpoints into the L2P table under recov-
ery, 3) count the wid of �ash pages written after the latest
checkpoint according to the page pointers recorded in the lat-
est checkpoint, and determine the completion/incompletion
of each write request, 4) recover write requests after the lat-
est checkpoint using a �ow network, which we will describe
shortly, and 5) sequentially incorporate the L2P changes of
the write requests after the latest checkpoint.

The fourth phase above needs awareness of the order, com-
pletion, and coalescing of write requests to recover the disk
to a state that satis�es our claimed guarantees. To this end,
we formulate the task as a �ow network problem as follows.
As shown in Figure 6, write requests are represented by ver-
tices. The order of immediately successive write requests is
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denoted by the straight directed edges pointing from request
wid = n to request wid=n+1, and coalescing between write
requests is denoted by bent directed edges pointing from the
earlier request to the later request. Each vertex is labeled by
a wid and a Boolean value that denotes whether the write
request is incomplete. Two additional vertices, s and t, are
connected to the �rst and last vertices, respectively, to form
a �ow network from source (s) to sink (t), where s can be
viewed as the latest checkpoint.

With such a formulation, �nding a valid order-preserving
recovery point is equivalent to �nding an s-t cut such that 1)
the cut size is equal to one (i.e., only a straight edge but not
bent edges crosses the cut) and 2) the subgraph that contains
vertex s (referred to as subgraph S for short) needs to contain
no vertex denoting that the corresponding write request is
incomplete. The rationales are as follows. The construction
of the graph ensures that the write requests in subgraph S
must preserve the order. A cut whose size is equal to one
implies that coalesced write requests must be atomic. Since
all write requests in subgraph S are not incomplete, it is valid
for OPTR to recover them and drop others.

Let us take Figure 6 as an example. There are six write re-
quests (1 to 6) present after the latest checkpoint, and some of
their data pages have arrived in �ash memory. The construc-
tion of the �ow network reveals seven possible s-t cuts, 1 to
7, each representing a potential recovery point. Among the
seven cuts, only 1 and 3 are valid. Cuts 5 to 7 are invalid re-
covery points because request 4 is incomplete, which breaks
the order-preserving guarantee. Cuts 2 and 4 are invalid re-
covery points because they both cause coalesced requests to
tear apart. Let us take Cut 4 as an example. Since some pages
of request 3 are coalesced by request 5, request 3 cannot exist
alone without request 5.

Note that OPTR can also handle multiple coalesces to the
same page by creating multiple curved edges in the �ow
network. Again, take Figure 6 as an example. Consider a
scenario where request 5 modi�es a dirty cached page written
by request 3, and then request 6 modi�es the same page while
this page is still dirty in the cache. This scenario would result
in one curved edge from 3 to 5 and one from 5 to 6, as shown
in Figure 6.

The optimal order-preserving recovery point should in-
clude as many write requests as possible. Therefore, �nding
this point is equivalent to �nding the abovementioned s-
t cut with the maximal subgraph S. A naive algorithm to
�nd the optimal order-preserving recovery point is to start
from a subgraph S containing only vertex s and gradually
add vertices to subgraph S from left to right, one vertex at
a time. Each time a vertex is added, the cut is checked to
determine whether its size is equal to one and no request in
S is incomplete. By doing so, the optimal recovery point is
available.

In addition to the naive approach, we use a more e�cient
algorithm when implementing OPTR as follows. Let widinc
be thewid of the earliest incomplete write and C be the set of
all coalescing records generated after the latest checkpoint.
As in Section 3.2, a coalescing record is in the form of an
< x, y > pair. The pseudocode is provided in Algorithm 1.

Algorithm 1 Find Optimal Recovery Point
Input: widinc, C
Output: the optimal recovery point

1: widrec ← widinc;
2: Sort C by x in descending order;
3: for c ∈ C do
4: if c.x < widrec ∧ c.y >= widrec then
5: widrec ← c.x;
6: end if
7: end for
8: return widrec;

4 Filesystem and Application Optimiza-
tions

We demonstrate Ext4 �lesystem and SQLite database opti-
mizations that exploit the bene�ts of OPTR SSDs as follows.

At the Ext4 level, we optimize an existing �lesystem prim-
itive, fsync (and its variant, fdatasync) and introduce a new
�lesystem primitive, �ence (and its variant, fdatafence). For
brevity, we refer to fdatasync as fsync and fdatafence as �ence
in this section. Conventional fsync issues two �ush com-
mands to a disk, one after fsync transfers a journal to the
disk and the other after fsync transfers a commit record to
the disk. Our optimized fsync uses the same order to transfer
the journal and commit record to the disk but only issues the
second �ush request to the disk. Conventional fsync requires
the �rst �ush to prevent SSDs from persisting the commit
record prior to the journal. With OPTR SSDs, which preserve
order, the �rst �ush becomes safely omissible. Note that the
second �ush of the optimized fsync still can guarantee the
same durability semantics as the original fsync does.

The newly introduced�ence resembles the optimized fsync.
This primitive also uses the same order to transfer the journal
and commit record to the disk but omits both �ush requests.
Therefore, �ence is a pure barrier for applications to de�ne
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the required partial order of transferring write requests to
disks. With OPTR SSDs and the newly introduced �ence,
applications can use fsync sparingly only when immediate
durability is needed.

At the SQLite level, we modify SQLite to use �ence when-
ever a barrier alone is su�cient and to use the optimized fsync
when immediate durability is required. To commit a single
INSERT transaction, SQLite (version 3.19) calls fsync four
times in its default con�guration (journal_mode=DELETE
and synchronous=FULL) [1]. Since the default con�gura-
tion fails to guarantee durability on Ext4 (because unlink is
not synchronous [3]), we set the con�guration to the syn-
chronous=EXTRA mode, which incurs one additional fsync
on the parent directory after unlink to persist the deletion [4].
The objectives of the �rst four fsyncs are as barriers instead
of requesting immediate durability. The �rst fsync is a bar-
rier after writing the content of a rollback journal �le. The
second fsync is a barrier to enforce that the rollback journal
�le exists in the directory before the db �le is modi�ed. The
third fsync is a barrier after writing the header of the rollback
journal. The fourth fsync is a barrier after writing the db �le.
Therefore, we change these four fsyncs to �ences. For the
�fth fsync, we change it to the optimized fsync.

Some applications and �lesystems, such as SQLite and
OptFS, do not strictly demand immediate durability. For ex-
ample, SQLite developers deliberately choose to avoid the
�fth fsync by default and to allow loss of durability follow-
ing a power loss event [3]. In this case, the OPTR-enabled
no-barrier mode is the best solution.

5 OPTR Design Validation
Validating the functional correctness and crash guarantees
of an FTL poses two challenges to FTL designers. First, the
validation process is inherently time consuming since it re-
quires extensive stress tests to create a large number of crash
points. FTL operations such as GC, which are not invoked
until a su�cient number of writes occur, make the issue even
worse. Second, one may lack necessary hardware support
during development of a new FTL. For example, the OpenSSD
platform [2] on which we implement OPTR does not allow
access to the spare area of �ash, which OPTR demands during
recovery.

To address this issue, we extend an FTL testing framework
named Virtual Stress Testing (VST) [31] and use it to validate
our OPTR implementation. Please note that we still evaluate
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Figure 8: Extensions for crash-guarantee validation.

the performance on real OpenSSD hardware [2]. We use the
same FTL code in the two experimental environments and
make slight modi�cations to overcome hardware limitations
(e.g., accessing the spare area).

5.1 VST Testing Framework
VST [31] is a simulation framework designed for validating
the functional correctness of FTLs. This framework enables
one to execute FTLs on PCs or servers that emulate the
SRAM, DRAM and �ash required by the FTLs. VST outper-
forms traditional FTL stress tests that use real SSDs by orders
of magnitude. To validate an FTL, VST issues an extensive
number of read and write requests to the FTL and reports a
bug if the FTL violates any prede�ned rule such as incorrect
page contents or a nonsequential program within a block.

The core data structure of VST is the emulated �ash mem-
ory. As shown in Figure 7, an emulated �ash page contains
three �elds: an erased �eld that denotes whether a page has
been erased, an lpn tag that records the LPN of the page,
and a data pointer that points to the FTL metadata stored
in the page. The design of storing an lpn tag for host data
rather than the actual contents dramatically decreases the
memory requirement for simulation and speeds up the test.
Thus, VST is particularly suitable for our validation purposes,
as we want to generate a very large number of crash images.

5.2 Extending VST for Crash Recovery Tests
We largely extend VST to support crash recovery tests, which
the original VST does not touch at all. For example, Figure 8
depicts the extensions we made to the emulated �ash mem-
ory. We divide each emulated page into multiple 512-byte
sectors to match the granularity of IO requests and further
add a version attribute to each emulated sector. The version
of a sector starts with 0 and increments by 1 when the sector
is updated. For crash simulation, we fork a separate thread
to periodically take snapshots of the emulated �ash memory
and store the snapshots as crash images.

The process of validating whether an FTL obeys pre�x
semantics and request atomicity is described as follows. First,
we compile the FTL under test to a Linux shared object,
execute the FTL on the extended VST, drive the FTL using



a trace �le, and generate a number of crash images. Then,
VST deserializes each crash image back into the form of the
emulated �ash memory and triggers the recovery procedure
of the FTL. After recovery is done, VST queries the �rmware
for the last write it has recovered, which we call the recovery
point, and replays the same trace separately until the recovery
point to construct the golden disk, which represents the result
of bug-free and crash-free execution. Finally, for each written
sector in the golden disk, VST issues a read targeting the
sector and checks if the LBA and version returned by the FTL
match with those in the golden disk. If any inconsistency
exists, our extended VST framework reports a violation.

We can also validate whether the FTL obeys �ush seman-
tics. We insert �ushes into the request sequence and record
the ID of the last �ushed write in the header of a crash image.
If the FTL fails to recover any write prior to the last �ush,
our VST framework also reports a violation.

5.3 Validation Results
We select 12 write-heavy traces from the MSRC I/O
traces [35], which cover a variety of server-level access pat-
terns [46], to drive the FTL tests. Our validation process con-
sists of three runs. In the �rst run, we execute the �rmware
without crashes being simulated to validate its functional
correctness. Similar to the validation approach in [31], we
repeat each trace until the write amount reaches 1 TB. In
the second run, we let the �rmware recover from a total of
2,400 crash images created without any �ush issued to vali-
date whether the FTL correctly obeys pre�x semantics and
request atomicity. The �nal run is similar to the previous
run, but we additionally insert a �ush for every 1,000 writes
to validate whether the FTL also obeys the �ush semantics.

Table 1 shows the �nal validation results. Our imple-
mented OPTR passes all three runs of tests. Please note that
these results also suggest that our extended VST simulation
framework passes the stress test, and this �nding makes the
simulator a much more reliable platform for future research.

Table 1: Validation results for our OPTR FTL.

Functional
Correctness

Prefix Semantics
Preserved

Flush Semantics
Obeyed

1-TB stress test V

2400 images w/o flushes V

2400 images w/ flushes V V

6 Evaluation
6.1 Experimental Setups
We implement the OPTR FTL on a real SSD (OpenSSD [2])
with an ARM7 core at 87.5 MHz, 96 KB on-chip SRAM, 64
MB DRAM, and 128 GB �ash memory. We organize a total
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Figure 9: Performance of the three OPTR usage modes. In
addition to the three usage modes and the baseline, we plot
two additional bars: The leftmost bar represents running un-
modi�ed SQLite and Ext4 on OPTR to demonstrate OPTR’s
overhead for enforcing ordering. The rightmost bar repre-
sents running unmodi�ed SQLite and Ext4 mounted with
the no-barrier option; this con�guration guarantees neither
durability nor consistency and is for demonstrating the upper
bound.

of 16 �ash chips into four channels, each channel connects
to four chips, each chip contains approximately 4,000 blocks,
and each block contains 128 16-KB pages. The SSD adopts
a static allocation strategy, which allocates a logical page
to a certain �ash chip based on modulo [22]. We allocate 8
MB of DRAM as the write cache of the SSD and adopt the
LRU cache replacement policy. We adopt the greedy policy
for GC [29, 42]. We store the per page recovery information
(i.e., the wid, size and lpn described in Section 3.1) in the
last page of each �ash block. For the OPTR-speci�c settings,
we reserve 32 blocks for full checkpoints and 32 blocks for
incremental checkpoints and coalescing records.

All the experiments are performed on a server with a 6-
core Intel i7-8700 CPU and 32 GB DRAM running Ubuntu
16.04. We erase the entire SSD before conducting each ex-
periment. More experimental setups are described in the
captions of each experimental results �gure.
6.2 System-Level Performance
In this set of experiments, we evaluate three usage modes of
OPTR as mentioned previously. The �rst mode ( in Figure 2)
runs unmodi�ed SQLite and the optimized version of Ext4;
the second mode (® in Figure 2) runs the optimized versions
of SQLite and Ext4 (details of the optimizations are described
in Section 4). The third mode is the OPTR-enabled no-barrier
mode (¯ in Figure 2). This mode guarantees consistency
but achieves only eventual durability instead of immediate
durability.

We use a microbenchmark that keeps generating trans-
actions for a time interval of �ve minutes. Each transaction
inserts a key-value pair into the SQLite database. Figure 9
shows the throughput performance of the three usage modes
of OPTR. Removing the �rst �ush of fdatasync (the third bar)
improves the performance by 1.27×; invoking fdatafences
(the fourth bar) for ordering constraints yields 2.85× im-
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Figure 10: Endurance impact of the three OPTR usage modes.

provement; �nally, the OPTR-enabled no-barrier mode per-
forms 6.03× better than the baseline, and this result is very
close to the upper bound of 6.18×. We conduct the experi-
ments ten times, and the errors are within± 0.7%. To quantify
the FTL overhead of enforcing the order, we compare unmod-
i�ed SQLite and Ext4 atop OPTR SSDs (the �rst bar) with
unmodi�ed SQLite and Ext4 atop baseline SSDs (the second
bar). The overhead is unnoticeable (hidden by the �ushes
of the workload). This result is consistent with our analy-
sis in Section 7. However, we would like to emphasize that
OPTR is not overhead-free (as shown in Section 7, OPTR can
decrease the performance by up to 11.1% in some synthetic
workloads).

In terms of SSD endurance impact, OPTR may improve
endurance because removing �ushes results in a greater
chance of write coalescing; OPTR may also hurt endurance
because OPTR stores checkpoints and coalescing records into
�ash memory for the sake of crash recovery. Figure 10 shows
the overall endurance impact of the three OPTR usage modes.
The y-axis denotes the average number of �ash pages written
per transaction. We break down written pages into user data
(data) and OPTR-related data (i.e., incremental checkpoints,
full checkpoints, and coalescing records).

The �rst usage mode of OPTR (the third bar) slightly in-
creases the number of written pages per transaction (1.13×).
The second usage mode (the fourth bar) lowers the frequency
of �ush operations and thereby decreases the number of writ-
ten pages per transaction to 0.6×. The third usage mode does
not incur any �ush, and thus, the number of written pages
is 0.31× that of the baseline.

Figure 11 shows the cumulative latency distribution of
transactions. Flushes are slow in nature, and thus, partially
or fully removing them is expected to achieve shorter latency.
The experimental results show that the average latencies of
OPTR in the �rst, second and third usage modes are 0.78×,
0.35× and 0.17× that of the baseline, respectively.

7 FTL Analyses
In this section, we analyze the FTL in more detail. We �rst
report the extra �ash page-programs caused by OPTR. Next,
we analyze the extra GC constraints and report the overhead
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in terms of throughput performance. The above experiments
are conducted using synthetic workloads that comprise ran-
dom writes with di�erent access localities (high: 1 MB foot-
print, medium: 80 MB footprint, and low: 1 GB footprint),
di�erent access granularities (large: 1 MB, small: 16 KB, and
hybrid: half large and half small), and di�erent �ush inter-
vals (1, 4, ..., to 16,384 writes). Note that these analyses are
pessimistic because OPTR does not bene�t from reducing
�ush requests in the synthetic workloads. Finally, we discuss
the memory overhead (i.e., extra SRAM, DRAM, and �ash
space) caused by OPTR, and then, we estimate the recovery
time.

7.1 Extra Flash Page-Programs
OPTR incurs extra �ash page-programs because of incre-
mental checkpoints, coalescing records, full checkpoints, and
internally invoked �ushes.

The overhead of incremental checkpoints is negligible
(<0.075%), as shown in Figure 12a. The overhead is low be-
cause writing each user data page (e.g., 16 KB) incurs only an
8-byte L2P table change record, which constitutes incremen-
tal checkpoints. The overhead of incremental checkpoints is
even low if write requests coalesce in the write cache. For
example, the overhead is less than 0.01% for the workload
with high access locality and a long �ush interval (e.g., the
high-large workload with a �ush interval greater than 16
writes).

The overheads of coalescing records and full check-
points are also negligible for most workloads. An exception
is the workload with high locality and small access granu-
larity (i.e., high-small) when the �ush interval is between
four and 64 writes (Figures 12b and 12c). High write local-
ity tends to incur write coalescing. With more coalescing
records, the checkpoint area is �lled quickly, and OPTR in-
vokes full checkpoints more frequently. If the �ush interval
is one write, �ushes happen to suppress the occurrence of
write coalescing. If the �ush interval is long (e.g., >256 writes)
or if the size of the write granularity is large, the overhead
decreases because approximately 800 coalescing records re-
sult in an extra 16 KB page-program (each coalescing record
is 20 bytes in our implementation).
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(a) Incremental Checkpoint
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(b) Coalescing Record
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(c) Full Checkpoint
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(d) OPTR-Incurred Flush

Figure 12: Page write overhead analysis using synthetic workloads. The pre�x in the legends indicates the locality:
high/medium/low access 1 MB/80 MB/1 GB of �ash. The su�x indicates the access granularity: small/large write 16 KB/1 MB
of data per request, and hybrid writes 16 KB or 1 MB of data per request, each with a 50% chance.

The percentages of page-programs caused by internally
invoked �ushes are shown in Figure 12d. In our OPTR
implementation, the FTL internally �ushes the write cache
under the following four conditions: before an incremental
checkpoint, before a full checkpoint, before GC, and every
�ve seconds. The �rst three types of �ushes are for correct re-
covery in case a crash happens, and the fourth type of �ushes
is for bounding the longest time duration for which dirty
data can reside in the write cache. We observe a reasonable
trend: if the �ush interval is short (e.g., every four writes),
the page-programs caused by internally invoked �ushes only
account for a small percentage (less than 4%). In comparison,
if the �ush interval is long (e.g., every 64 writes), the page-
programs caused by internally invoked �ushes account for a
high percentage (up to 17%). Note that the page-programs
analyzed here are for user data instead of OPTR’s metadata,
and baseline SSDs also need to �ush their write caches at
some points. Therefore, the above analysis is a conservative
overestimation of overhead.

7.2 GC Constraints
Although OPTR constrains GC from selecting recently writ-
ten �ash blocks to guarantee recoverability, this constraint
does not cause signi�cantly adverse e�ects. The reasons are
two-fold. First, OPTR constrains GC from selecting �ash
blocks written after the latest full or incremental checkpoint.
According to our analysis, this type of blocks accounts for
only 0.2% of the total blocks on average. Second, sophisticated
GC policies such as age-aware GC policies avoid selecting re-
cently written blocks in the expectation of data invalidation
due to write locality.

7.3 Performance Overhead
Figures 13a, 13b, and 13c show the throughput performance
(MB/s). Dotted lines denote the throughput of the baseline,
and solid lines denote that of OPTR. Overall, OPTR incurs less
than 2% performance overhead on average and up to 11.1%
performance overhead for the synthetic workloads. Note
that OPTR can slightly outperform the baseline for some
workloads when OPTR’s mechanisms happen to match the



workload characteristics. For example, for workloads with a
high locality, age-aware GC is better than greedy GC. OPTR
happens to achieve some e�ects of age-aware GC because
OPTR constrains GC from selecting recently written �ash
blocks.

7.4 Memory Overhead
The DRAM and SRAM overheads for implementing OPTR
are analyzed as follows. First, OPTR associates each entry
in the write cache with two extra attributes, wid (8 bytes)
and size (4 bytes). In our implementation, the write cache is
8 MB (16 KB × 512 entries). Therefore, the space for storing
wid is 8 × 512 = 4 KB (in DRAM in our implementation),
and the space for storing size is 4× 512 = 2 KB (in SRAM in
our implementation). Second, we employ a 256 KB DRAM
area to bu�er incremental checkpoints. Third, OPTR stores
coalescing records in a DRAM bu�er, whose size is equal to
a �ash page, e.g., 16 KB. Finally, the memory space for crash
recovery can overlay that for regular FTL operation, so we
do not consider this space as additional overhead.

The �ash memory overhead for implementing OPTR is
described as follows. First, OPTR additionally stores wid
and size (8 bytes and 4 bytes, respectively) in the spare area
of �ash memory. Modern �ash memory with 16 KB page
size equips each page with a 2,208-byte spare area (i.e., page
size = 16,384 + 2,208 = 18,592 bytes) [6]. Since OPTR only
consumes 12 bytes out of the 2,208 bytes, the overhead is
only 12/2,208=0.5%, and the impact on the ratio of the error
correction code rate is only 16,384/18,580 - 16,384/18,592 =
0.06%. Second, OPTR stores the lpn of each �ash page in
the spare area and summarizes the lpn of a block of pages
in the last page of the block. We anticipate that baseline
SSDs also do so. Third, OPTR keeps incremental checkpoints,
coalescing records, and full checkpoints in �ash memory.
We set the area for storing incremental checkpoints and
coalescing records to 64 MB. The size of a full checkpoint is
equivalent to that of the L2P table. Given an SSD with 128 GB
�ash memory and 16 KB pages, the size of a full checkpoint
and its shadow is at most 128 GB/16 KB × 4 B × 2 = 64 MB.

7.5 Recovery Time
OpenSSD does not provide an access approach to the spare
area of �ash pages, so we are not able to measure recovery
time using OpenSSD. Instead, we conduct a worst-case esti-
mation. We anticipate that accessing �ash memory, which is
slower than SRAM, DRAM, and computation, dominates the
recovery time.

Recovery begins with reading the full checkpoint, whose
size is approximately 32 MB (2,048 pages) for a 128 GB SSD.
Second, OPTR sequentially scans the 64 MB area (4,096 pages)
for storing incremental checkpoints and coalescing records.
Third, OPTR scans the summary pages programmed after
the latest checkpoint. Given a 256 KB bu�er for incremental
checkpoints, the number of summary pages after the latest
checkpoint can be up to 256. Finally, each �ash chip can
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Figure 13: Performance overhead for preserving write order.

have a partially written block, and OPTR needs to access
these pages during recovery. We assume that the number of
�ash pages of partially written blocks is 4,096. Overall, there
are 10,496 pages. We conservatively assume that reading
each �ash page costs 100 µs and no internal parallelism is
available; then, the worse-case recovery time is 10,496× 100
µs = 1 s, which is acceptable in general.

8 Related Work
OptFS [15], BarrierFS [45], and Featherstitch [23] are related
�lesystem and IO stack works that propose to decouple order-
ing from durability. Unlike this work, they do not focus on the
FTL design and recovery process of SSDs. OptFS presents a
�lesystem that requires disks to support asynchronous dura-
bility noti�cation, which noti�es a host when certain blocks
become persistent. BarrierFS presents a �lesystem and an
IO stack that require disks to support the cache barrier com-
mand, which is only available in a few eMMC (embedded
multimedia card) products [45] but unavailable in the stan-
dard block device interfaces of o�-the-shelf SATA, SAS, and
NVMe SSDs. BarrierFS [45] implements an FTL to support
the barrier write command in a commercial eMMC prod-
uct. OPTR is complementary to both OptFS and BarrierFS
and can simplify their designs. For instance, OptFS requires
checksum encoding/decoding to enforce the ordering con-



straint between journal metadata and the commit record, and
BarrierFS uses explicit cache barrier primitives to declare
order; with OPTR, both can be simpli�ed out because OPTR
implicitly preserves the write order.

Mime [13], the Logical Disk [21], Stasis [43], TxFlash [40],
Beyond Block IO [37], Mars [19], LightTx [32], X-FTL [28],
and Isotope [44] propose transactional storage with full or
partial supports to ACID at the disk level. The notion of
transaction is stronger than OPTR’s guarantees, but these
works all propose changing the standard block device in-
terface, which inevitably incurs signi�cant software stack
changes. Among these works, Mime [13] also advocates the
bene�ts of request atomicity and ordering, which are in line
with OPTR’s design. Compared with OPTR, Mime [13] is fun-
damentally di�erent because it is HDD design instead of SSD
design. In addition, Mime does not allow write coalescing in
a write cache, which OPTR can handle.

Increasing the disk-level crash guarantee not only can
improve system performance but also, more importantly,
helps to reduce crash vulnerabilities. In this sense, just re-
placing baseline SSDs with OPTR SSDs is bene�cial. Crash
vulnerabilities are serious problems. Pillai et al. [39] �nd
60 application-level crash vulnerabilities in widely used ap-
plications such as LevelDB and Git. Zheng et al. [47] also
�nd ACID violations in many database systems. These vul-
nerabilities are mainly caused by the weak and vague crash
guarantees provided by the underlying �lesystems. Thus,
Bornholt et al. present crash-consistency models [10], and
Pillai et al. [39] specify a set of persistent properties. These
approaches aim to con�ne and standardize the crash behav-
iors of �lesystems, and OPTR can help to achieve these aims.

Several studies have attempted to reduce the usage or
overhead of �ush operations at the application or �lesystem
level. BarrierFS [45] and [5] replace unnecessary �ushes with
cache barrier commands. Our previous work-in-progress re-
port [12] proposes to directly omit unnecessary �ushes by
considering order-preserving SSDs that achieve strong request-
level crash guarantees. iJournaling [38] performs �ne-grained
journaling per �le to mitigate the interference between fsync-
intensive threads. NoFS [16] proposes backpointer-based
consistency to fully eliminate ordering constraints but at
the cost of not being able to implement atomic operations
(e.g., rename). Xsyncfs [36] introduces external synchrony, in
which a write is not immediately persisted (i.e., asynchronous
writes) unless an external observer sees the write; thereby,
this method provides the simplicity of synchronous writes
and approaches the performance of asynchronous writes.
Chen et al. identify the sync ampli�cation issue in virtual-
ized environments and propose solutions using journaling
techniques at the virtual-disk level [14].

One can equip SSDs with supercapacitors, which may
help to preserve write order. However, they are not widely
adopted. In previous work [48], power interrupt tests are
performed on 15 SSDs, and only four out of the 15 tested SSDs

are equipped with supercaps. In addition, supercapacitors
may be su�cient to protect an FTL from corruption, but they
may not be su�cient to preserve write order. Among the four
tested supercapped SSDs in [48], two still exhibit shorn or
unserializable writes under power faults. Finally, capacitors
are sensitive to temperature- and aging-related degradation
and failures [25].

9 Conclusion
In common practice, consumer-grade SSDs (whose write
cache is not battery-backed) cannot guarantee the order and
atomicity of write requests upon a crash because SSD perfor-
mance optimization strategies including write caching, write
coalescing, request scheduling, and parallel �ash program-
ming all tend to break the guarantee. The lack of a strong
crash guarantee at the disk level complicates the design of
applications and �lesystems and degrades the overall system
performance. By exploiting the fact that SSDs adopt out-of-
place updates, this work proposes order-preserving transla-
tion and recovery design (OPTR) that maintains SSD perfor-
mance while preserving an illusion that write requests are
completed in order and atomically. We realize the required
address translation, garbage collection, and crash recovery
techniques internal to a real SSD to achieve OPTR. We also
develop a functional simulator to validate the correctness of
OPTR.

Three usage modes of OPTR SSDs are identi�ed and eval-
uated: 1) optimizing �lesystems to remove the unnecessary
�ushes of fdatasync, 2) optimizing both applications and
�lesystems to further replace fdatasync with fdatafence prim-
itives, and 3) combining the performance advantages of the
no-barrier mode of �lesystems and the strong request-level
crash guarantees of OPTR SSDs. Real system experiments
based on SQLite, Ext4, and a real SSD show that these three
modes achieve 1.27×, 2.85×, and 6.03× performance im-
provement, respectively.

This work is the �rst SSD work with strong request-level
crash guarantees and the standard block device interface. In
comparison with previous works on transactional SSDs, we
change the impression that increasing SSDs’ crash guaran-
tees is typically available at the cost of altering the standard
block interface. We anticipate that OPTR can inspire more
future application and �lesystem designs.
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