
VST: A Virtual Stress Testing Framework for
Discovering Bugs in SSD Flash-Translation Layers

Ren-Shuo Liu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

renshuo@ee.nthu.edu.tw

Yun-Sheng Chang
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

yschang@gapp.nthu.edu.tw

Chih-Wen Hung
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan

s102061630@m102.nthu.edu.tw

Abstract—Flash translation layers (FTLs) are the core em-
bedded software (also known as firmware) of NAND flash-
based solid-state drives (SSDs). The relentless pursuit of high-
performance SSDs renders FTLs increasingly complex and in-
tricate. Therefore, testing and validating FTLs are crucial and
challenging tasks. Directly testing and validating FTLs on SSD
hardware are common practices though, they are time-consuming
and cumbersome because 1) the testing speed is limited by the
hardware speed of SSDs and 2) just reproducing bugs can be
challenging, let alone locating and root causing the bugs.

This work presents virtual stress testing (VST), a simulation
framework to enable executing SSD FTLs on PCs or servers
against virtual SRAM, DRAM, and flash emulated by host-side
main memory. FTL function calls, such as moving data from
flash to DRAM, are served by the VST framework. Therefore,
VST can test FTLs without SSD hardware requirements nor SSD
speed limitations, and root causing bugs becomes manageable
tasks. We apply VST to representative SSD design, OpenSSD,
which is actively utilized and maintained by SSD and FTL
communities. Experimental results show that VST can test FTLs
at a speed up to 375 GB/s, which is several hundred times
faster than directly testing FTLs on SSD hardware. Moreover, we
successfully discover seven new FTL bugs in the OpenSSD design
using VST, which is a solid evidence of VST’s bug-discovering
effectiveness.

Index Terms—Embedded software, software testing, software
debugging, systems simulation, data storage systems, disk drives,
flash memories

I. INTRODUCTION

Flash translation layers (FTLs) are the core embedded
software (also known as firmware) of NAND flash-based
solid-state drives (SSDs). Because SSDs are designed to
expose to a host computer logical address space that accepts
reads and writes like hard disk drives (HDDs) do, FTLs are
responsible for relocating flash data, erasing outdated flash
data, and calculating flash addresses for every host read or
write request. Academia and industry have been continuously
innovating new strategies to enhance the performance of
FTLs, including (by a broad FTL definition) address map-
ping, wear leveling [13], [30], hot-cold data separation [15],
request scheduling [12], [18], dynamic write allocation [6],
data migration [6], flash mode switching [11], [20], [27],
refreshing [16], [21], WOM-coding [17], [28], and advanced
error control and handling [25], [26], [32]. For example, the

address mapping schemes have evolved from block-based,
page-based [7], hybrid [24], to demand-based [19] design.

The relentless pursuit of high-performance FTLs renders
FTL firmware increasingly complex and intricate; therefore,
testing and validating FTLs are crucial and challenging tasks.
In common practices, FTL developers perform real SSD-based
stress tests to discover FTL bugs. For example, by executing
stress-testing software (e.g., [3]), a computer can generate
intensive read and write traffics to stress an SSD. The FTL is
considered probably buggy if data corruption, abnormal SSD
disconnection, or request timeout occurs during tests. This real
SSD-based testing methodology is (and will still be) useful
and required; however, it has two fundamental drawbacks and
limitations:

• First, SSDs (especially flash memory) exhibit a quite
limited access speed, which poses speed limitations to
stress tests. For example, the fastest reported mainstream
SSD in April 2017 is an NVMe PCIe SSD with a write
speed of 0.73 GB/s on average (0.14 GB/s for random
writes, 0.36 GB/s for queued random writes, and 1.7 GB/s
for sequential writes) [4]. That means, it takes 23 minutes
for one to stress test an FTL with 1 TB mixed writes
(1000/0.73/60 = 23) even on this fastest NVMe PCIe
SSD, let alone other relatively slower SSDs including
SATA SSDs, USB sticks, eMMC chips, and SD cards,
which also demand FTL tests.

• Second, investigating a failure occurring during real
SSD-based FTL tests is a nightmare for FTL devel-
opers because it involves complicated factors including
host OS (e.g., Windows or Linux) compatibility, mother
board compatibility, cable signal quality, flash memory
quality, power supply stability, FTL firmware, and non-
FTL firmware. Just reproducing the failure can be very
challenging, let alone locating and root-causing the bugs,
which require experiences, patience, expensive equipment
(e.g., protocol analyzers, logic analyzers, and JTAG de-
buggers), and sometimes good luck.

To address the above shortcomings, this work proposes a
virtual stress testing (VST) framework, a functional simulation
methodology focusing on testing and validating FTLs (source
code available at http://ssdlab.ee.nthu.edu.tw/vst). VST en-

http://ssdlab.ee.nthu.edu.tw/vst


Computer

GHz, multi-core CPU

GHz, GB DRAM 

Computer

Limited 
testing speed

Stress 
testing 

software

VSTFTL

Real SSD hardware 
(flash, DRAM, etc.)

FTL FTL FTL

High aggregate 
testing speed

Virtual SSD 
hardware (flash, 
DRAM, etc.)

~100 MHz 
embedded 
CPU

Multiple FTL instances 
simultaneously under test

x86 executables
running at the 
native x86 speed

Virtual Stress Testing (VST) FrameworkReal SSD-Based Test

Fig. 1. Comparing the VST framework with real SSD-based tests

ables FTL developers to compile and execute native SSD FTL
code on PCs or servers without the need of SSD hardware.
VST utilizes a PC’s or server’s main memory to emulate
various types of memory in SSDs (e.g., SRAM, DRAM, and
flash). An SSD has a few GB to TB of capacity, which is
usually much larger than PC or server main memory. To
tackle this issue, we design a data structure that can efficiently
represent large flash capacity.

We apply VST to well-known SSD design, OpenSSD [1].
OpenSSD is actively utilized and maintained by SSD and
FTL communities; therefore, its FTLs are representative. Our
evaluation shows that VST can perform stress tests on FTLs at
a high speed up to 111 GB/s using single host CPU core and up
to 375 GB/s using four host CPU cores, i.e., several hundred
times faster than directly testing FTLs on SSD hardware. We
successfully discover seven new FTL bugs in the OpenSSD
design using VST, which is a solid evidence of VST’s bug-
discovering effectiveness. It would be very hard to discover
and investigate these bugs without VST.

Several things are worth noting here. First, this work does
not mean to abandon traditional real SSD-based tests, which
can discover non-FTL bugs and hardware-related bugs that
VST cannot detect. Second, upgrading VST is needed to sup-
port new flash or new SSD interfaces. For example, emerging
3D flash supports sub-block operations [14], and future SSDs
can adopt key-value [22] or de-indirection interfaces [8], [31]
instead of the conventional block-device interface. Modifica-
tions for these features would be modest and a one-time effort.
Lastly, although VST speeds up FTL tests and ill FTL behavior
detection, it remains engineers’ responsibility (in this paper,
ours) to pinpoint the buggy code in FTL firmware. Fortunately,
the outcomes of VST can provide informative clues about
in which function the bug is detected and what kind of ill
behaviors the bug exhibits.

This paper is organized as follows. Section II presents
related SSD simulator works. Section III presents VST design.
Section IV elaborates on the bugs we discover in OpenSSD
using VST and demonstrates the achievable testing speed of
VST. Section V concludes this paper.

II. RELATED SIMULATOR WORKS

Simulators [2], [5], [6], [9], [23] are widely used in SSD
researches. Two most representative simulators are Microsoft
Research SSDSim [6] and Linux NANDsim [2]. However,
as described below, they are not designed and optimized
for testing real-world FTLs at a high speed, which VST is
designed for and focuses on.

SSDSim [6] is one of the most widely used simulators
by SSD and FTL researchers (including us) to model and
compare the performance of different SSD or FTL designs.
Like most computer system simulators targeting accurate
performance analysis, SSDSim adopts an discrete-event simu-
lation paradigm instead of a procedural paradigm, which is the
nature of FTLs. Therefore, although SSDSim does simulate
a few FTL policies, the FTL policies are tightly coupled
with the discrete-event simulation framework, and porting
another real-world FTL to SSDsim is extremely difficult. For
an apparent example, SSDSim updates an FTL’s logical-to-
physical mapping table (lpn table[]) and active block pointers
in a C program file named ssd timing.c, which as the file name
suggests, also calculates the timing of various events such
as writing flash pages. Another example is that in addition
to performing an FTL’s garbage collection (GC), ssd clean.c
also needs to calculate the latency of GC for performance
simulation.

In addition, SSDSim abstracts away several SSD details that
are irrelevant to performance simulation but necessary to real-
istic FTLs. For example, real-world FTLs usually store address
mapping information (i.e., metadata) into flash memory and



TABLE I
VST APIS

Category API Name Arguments

DRAM

vst_write_dram_32 addr, val

vst_read_dram_32 addr

vst_write_dram_16 addr, val

vst_read_dram_16 addr

vst_write_dram_8 addr, val

vst_read_dram_8 addr

vst_set_bit_dram base_addr, offset

vst_clr_bit_dram base_addr, offset

vst_tst_bit_dram base_addr, offset

Category API Name Arguments

NAND Flash

vst_write_page bank, blk, page, sect, n_sect, dram_addr, lpn, is_host_data

vst_read_page bank, blk, page, sect, n_sect, dram_addr, lpn, is_host_data

vst_copyback_page bank, blk_src, page_src, blk_dst, page_dst

vst_erase_block bank, blk

I/O
vst_write_sector lba, len

vst_read_sector lba, len

Misc.
vst_memcpy dst, src, len

vst_memset addr, value, len

#pages / block

#blocks / bank

NULL

NULL

NULL

data
lpn

#banks / SSD

is_erased

#bytes per page

Fig. 2. Data structure for the emulated flash

retrieve them from the flash when necessary. SSDSim also
models this strategy (i.e., storing a summary page at the end
of each block); however, SSDSim only pays attention to the
latency of doing so without indeed keeping the information.
Another example is that when there are multiple requests
queued to access multiple flash elements connected to a
channel, SSDSim only calculates the overall latency assuming
the requests are interleavingly completed (i.e., ssd collect req-
in gang()) instead of invoking flash operations one by one

like what a realistic FTL should do.
A particular type of simulators, specifically named emula-

tors, use main memory or files to emulate the flash capacity
of an SSD. NANDsim [2] in the Linux kernel is the most
representative one among them. The advantages of this type
of emulators are that the emulated flash appears as a block
device in the OS and one really can execute applications
(e.g., databases) on the emulated flash to experience the
performance. However, emulators are not the optimal choice
for FTL tests. If the flash capacity is emulated using main
memory, which is typically few tens of GB, the size of
the emulated SSDs is very limited. If the flash capacity is
emulated using files, the testing speed cannot exceed the speed
of the underlying storage, which turns out to be the same
shortcoming as testing FTLs on real SSDs.

III. VST DESIGN

A. Big Picture

Figure 1 compares the VST framework (on the right-hand
side) with a real SSD-based test (on the left-hand side). In a
real SSD-based test, an FTL is executed on the SSD controller,
which typically consists of an embedded processor, on-chip
SRAM main memory, and off-chip DRAM and flash that are
not directly addressable. The FTL talks to on-chip DRAM and
flash controllers to access DRAM and flash, respectively. PC-
or server-side software utilities are used to generate intensive
read and write requests to stress the FTL on the SSD and
validate FTL’s functionalities. The testing speed is limited
because the embedded processor is typically a low-power
processor, and in addition, each flash read, write, or erase
operation must take 0.1 to few ms. If debugging the FTL is
necessary, common practices utilize an in-circuit debugger to
trace the firmware running on the SSD, a protocol analyzer to
record the packets transmitted through the IO interface of the
SSD, or a logic analyzer to capture the signals on the pins of
the SSD controller.

In comparison, VST on the right-hand side can perform FTL
tests without any SSD hardware requirements nor SSD speed
limitations. FTLs are compiled as x86 dynamically linked
shared objects (.so). VST emulates SSD hardware (virtual SSD
hardware) such as SRAM, DRAM, and flash memories using
the DRAM main memory of PCs or servers. VST also offers a
set of generic application programming interfaces (APIs) such
as reading an emulated DRAM word or erasing an emulated
flash block to interface FTL objects with the virtual SSD
hardware. Read and write requests are generated by the VST.
With the above design, an FTL can be executed on the PC
or server at a multi-GHz frequency like a native PC or server
program does. Multiple FTL instances can be simultaneously
under test, and the testing speed is limited by the memory
system and x86 processors of PCs or servers instead of flash
or a low-power processor. Once a failure occurs during FTL
tests, engineers can easily reproduce the failure and analyze the
failure in PC or server environments using generic debugging
approaches such as the GNU debugger (GDB).



B. APIs

Table I lists the key APIs supported by VST. The APIs
are in four groups, I/O, DRAM, flash, and miscellaneous. The
I/O API group generates reads or writes to an FTL under test.
The arguments for the two APIs are the starting logical block
address (LBA) and the length of the requested data. Please
note that host data are not one of the arguments here because
an FTL should work irrelevantly to the actual host data. The
DRAM API group includes reading and writing to different
sizes of data in the emulated DRAM. The miscellaneous API
group includes moving and filling data within DRAM or
SRAM. Emulating the I/O requests is done by synthesizing
requests according to trace files or a random sequence. Emu-
lating the DRAM and SRAM is done by creating raw arrays
in the DRAM main memory of PCs or servers.

The flash API group supports four fundamental flash op-
erations, i.e., reading a page, writing a page, copying a page
internally (i.e., copyback), and erasing a block. Flash memory
behaves differently from raw arrays, and thus the emulation
is more challenging than that of DRAM and SRAM. Detailed
design of flash APIs is presented in subsection III-D.

C. FTL-Aware VST Design and Optimizations

We observe that naively simulating FTL codes on PCs or
servers would cause excessive memory usage and redundant
memory accesses, which dramatically slow down stress tests.
By profiling the execution time and inspecting FTL source
code, we identify two FTL-aware design and optimizations for
VST regarding flash and RAM (an SSD’s SRAM or DRAM).

First, we propose that flash data need to be handled sep-
arately according to their impacts to FTL’s correctness. By
doing so, VST can achieve a high effective testing speed up
to several hundreds of GB/s. For example, VST keeps the
summary page that seals each flash block in the emulated
flash capacity but maintains a tag of logical page number
(lpn) for each flash page of host data, which are not directly
used by FTLs. Differentiating host data from other data
significantly reduces the memory traffics and footprint for
simulating a large-capacity SSD and boosts the testing speed.
The footprint reduction ratio is approximately equal to the
number of flash pages per flash block (depending on the design
of each FTL). We anticipate FTL developers can annotate this
data differentiating information in FTLs when flash APIs are
invoked. Such annotation is straightforward and a one-time
effort.

Second, we observe that FTLs frequently perform RAM
fills and RAM copies, but a significant portion of them are
in fact irrelevant to FTL tests. A lot of redundant operations
result from 1) filling a RAM buffer with 0xFF bytes when an
erased page is read and 2) copying data between RAM buffers
when a write request triggers a read-modify-write procedure,
but it turns out that the FTL does not need these RAM data.
Similar to handling flash data, we anticipate FTL developers
can annotate in FTLs whether each RAM fill or RAM copy
is omittable during FTL tests.

D. Flash Emulating Schemes

Figure 2 depicts the data structure we design to emulate
flash using host-side DRAM main memory. The data structure
consists of multiple arrays of subarrays. Each array corre-
sponds to a bank (also called a channel or a gang) of flash
elements, each subarray represents a block of multiple flash
pages, and each page consists of three fields, is erased, lpn,
and a data pointer. The is erased field stands for whether the
page is erased, the lpn field is a tag recording the logical page
number of the page, and the data pointer is allocated memory
space if the data of the page are not omittable.

Algorithm 1 vst write page
1: if (page > 0) then
2: prev page ≡ emulated flash[bank][blk][page-1]
3: if (prev page.is erased) then
4: exit(“ill behavior: non-sequential write in a block”)
5: end if
6: end if
7: page ≡ emulated flash[bank][blk][page]
8: if (! page.is erased) then
9: exit(“ill behavior: in-place write”)

10: else
11: page.is erased = false
12: if (is host data) then
13: page.lpn = lpn
14: else
15: page.data = malloc(bytes per page)
16: for (i = 0; i < len; i++) do
17: page.data[start+i] = dram addr[i]
18: end for
19: end if
20: end if

vst write page: Algorithm 1 lists the pseudocode of the
vst write page API. Lines 1 to 6 check whether all pages in
a block are written according to a strict sequential order, i.e.,
page 0, 1, ..., to the last page [10]. This constraint is needed for
multiple-level cell (MLC) flash to keep the error rate of write
disturbs under a predefined level. Lines 8 and 9 check whether
a page is in-place written without an erasure in advance. Lines
11 and 13 update the is erased and lpn fields.

Please note that we do not mean that violating the above
sequential-write and out-place-write rules is always a bug.
Some advanced FTLs [16]–[18] do exploit the advantages of
doing so in the presence of certain safety net mechanisms.
Because OpenSSD FTLs are not designed this way, reporting
all violations of these rules is necessary (Section IV).

It is challenging to emulate the full capacity of an SSD
using the DRAM main memory of PCs or servers because of
the large capacity of SSDs. To address this challenge, we let
VST omit to store the host data, which are irrelevant to FTL
stress tests. Lines 12 to 19 implement this strategy.

vst read page: Algorithm 2 displays the pseudocode of
the vst read page API. For a read request to host data, it is
sufficient to only check whether lpn remains consistent (Lines



Algorithm 2 vst read page
1: page ≡ emulated flash[bank][blk][page]
2: if (is host data) then
3: if (page.lpn != requested lpn) then
4: exit(“ill behavior: inconsistent lpn”);
5: end if
6: else
7: if (page.data) then
8: for (i = 0; i < len; i++) do
9: dram addr[i] = page.data[i];

10: end for
11: else
12: for (i = 0; i < len; i++) do
13: dram addr[i] = 0xff;
14: end for
15: end if
16: end if

Algorithm 3 vst erase block
1: for (p = 0; p < pages per blk; p++) do
2: page ≡ emulated flash[bank][blk][p])
3: page.is erased = true
4: page.lpn = UNKNOWN LPN
5: free(page.data)
6: page.data = NULL
7: end for

2 to 5). If an FTL tries to retrieve its own data (i.e., FTL
metadata), the data pointer is de-referenced to provide the data
(Lines 7 to 10). Lines 11 to 15 return data with all 0xff bytes
(the erased state of flash cells) if an erased page is read.

vst erase block: Algorithm 3 shows the pseudocode of the
vst erase block API. A loop iterates over all pages in a block.
The is erased field of each page is set, and the data pointer
of each page is freed.

IV. EVALUATION

We apply VST to OpenSSD [1] to demonstrate the effec-
tiveness of VST. Currently, the firmware of OpenSSD has
evolved from version 1.0.0 to the latest stable version of
1.1.0. OpenSSD offers three FTLs: Greedy, DAC, and FASTer.
Greedy FTL implements a page-based FTL with a greedy
victim selection policy during GC. Based on Greedy FTL,
DAC FTL further adopts the DAC hot-cold data separation
scheme [15] and a cost-benefit victim selection policy during
GC. FASTer is a hybrid FTL, which adopts page-based map-
ping for the log area and block-based mapping for the data
area [24].

We execute VST on a PC having an Intel Core i7-4790
3.6 GHz quad-core processor, 32 GB DDR3 DRAM main
memory, a 1 TB 7200-RPM HDD, and the Ubuntu 16.04
OS. The latest FTL code of OpenSSD (i.e., ftl.c) and VST
code are compiled using gcc 5.4.0 with the -O3 optimization
flag. We investigate the FTL bugs manifesting during VST

1 // the latest (v1.1.0) DAC ftl.c
2 assign_new_write_vpn(...)
3 {
4 ...
5 if(write_vpn is the last page of a blk){
6 ...
7 seal the blk;
8 while(free_blk_cnt() <= NUM_REGIONS){ // bug
9 garbage_collection();

10 }
11
12 if(write_vpn is no longer the last page of a

blk){
13 increment write_vpn;
14 return write_vpn;
15 } // bug
16
17 do{
18 blk = next_blk();
19 while(is_not_free(blk));
20 }
21 // write page -> next block
22 if(blk != write_vpn/PAGES_PER_BLK){ // bug
23 set write_vpn as (blk * PAGES_PER_BLK);
24 ...
25 }else{
26 increment write_vpn; // bug
27 }
28 return write_vpn;
29 }

Fig. 3. Code snippet of DAC FTL

1 // the latest (v1.1.0) FASTer ftl.c
2 full_merge(...)
3 {
4 ...
5 if(victim blk happens to be a sequential write

log blk){
6 partial_merge();
7 if(...){
8 return; // bug
9 }

10 }
11 ...
12 if(reaching the last page of the victim blk){
13 allocating a new log block;
14 }
15 }

Fig. 4. Code snippet of FASTer FTL

execution using GNU GDB and common software debugging
techniques.

We find that all the three FTLs of the latest OpenSSD
firmware have bugs. Without using VST, it would be difficult
for engineers (including us) to find out these bugs because
1) the firmware is complex, 2) the bugs are related to subtle
boundary conditions, and 3) some of the bugs only happen
during GC, which needs a large number of write requests to
trigger. In addition, although these bugs can also fail real SSD-
based stress tests, without VST, reproducing and locating the
bugs in real SSDs are still extremely challenging and time-
consuming tasks.



1 // the latest (v1.1.0) Greedy ftl.c
2 assign_new_write_vpn(...)
3 {
4 if(write_vpn is the last page of a blk){
5 ...
6 seal the blk;
7 if(free_blk_cnt() == 1){
8 garbage_collection();
9 }

10 }
11 if(blk != write_vpn/PAGES_PER_BLK){
12 set write_vpn as (blk * PAGES_PER_BLK);
13 ...
14 }else{
15 increment write_vpn; // bug
16 }
17 }

Fig. 5. Code snippet of Greedy FTL

1 // the latest (v1.1.0) Greedy ftl.c
2 logging_pmap_table(...)
3 {
4 for(bank=0; bank < NUM_BANKS; bank++){
5 ...
6 inc_mapblk_vpn(bank, mapblk_lbn); // bug
7 ...
8 // store metadata to flash
9 write_metadata(mapblk_vpn);

10 }
11 }

Fig. 6. Code snippet of Greedy FTL

A. FTL Bug Discovery Results

DAC FTL: Four bugs are found in the as-
sign new write vpn() function, which is responsible for
allocating a free flash page to store data. For brevity, Figure 3
lists the pseudocode. If the active block (the block to be
written to) is full (Line 5), Line 7 seals the block, and Lines
8 to 10 keep performing GC if the number of free blocks is
below a watermark. In Lines 12 to 15, if the active block
is no longer full (due to the GC in Lines 8 to 10), a free
page of the active block is returned; otherwise, Lines 17 to
19 search for a new free block. After a new free block is
obtained, the if code block (Lines 22 to 24) selects a free
page of the new block; otherwise, the next free page in the
current active block is selected (Line 26).

Lines 8, 15, 22, and 26 (Lines 1129, 1136, 1148, and 1157
of the original code, respectively) contain the four bugs we
newly discover using VST. In Line 8, the watermark is set
too low (i.e., equal to the number of hot-cold regions). Each
region can hold one free block as its active block, and thus
DAC FTL can get stuck in the infinite loop (Lines 17 to 19)
because of a shortage of available free blocks. The second bug
is at Line 15, where the else code block is missing. When the
active flash block happens to be full after garbage collection
(Lines 8 to 10), there should be an else code block at Line
15 to seal the flash block (like what Line 7 does). The third
bug is at Line 22, which expects that the free block found by

TABLE II
STRESS TESTING TRACES

Name

Write Read

#Requests
(M)

Tot. Size 
(TB)

#Requests
(M)

Tot. Size 
(TB)

hm_0 78 1 43 0.5 

mds_0 87 1 12 0.3 

prn_0 67 1 8 0.2 

proj_0 23 1 3 0.1 

prxy_0 91 1 3 0.0 

prxy_1 60 1 113 1.8 

rsrch_0 80 1 8 0.1 

src1_0 18 1 28 1.1 

src1_2 28 1 9 0.2 

src2_0 90 1 11 0.1 

src2_2 18 1 8 0.6 

stg_0 77 1 14 0.4 

ts_0 85 1 18 0.3 

usr_0 69 1 47 2.0 

wdev_0 84 1 21 0.3 

web_0 79 1 34 1.1 

Lines 17 to 19 must be a different block and cause a change of
the physical address. However, in a rare case, during several
times of GC (Lines 8 to 10), an active block can become
full, then be erased, and again be chosen as the active block.
Please note that this bug correlates with the first one: one
reason why the FTL can run out of available free blocks is that
the abovementioned FTL implementation does not allow the
current active block to become the next active block right after
GC. Lastly, when an SSD is powered on for the very first time,
Line 26 incorrectly causes the first page of the active block
to be skipped. This situation is a bug for DAC FTL because
the FTL is not designed to exploit the benefits of violating the
rule that all pages in an MLC flash block must be written in
a strictly sequential order (as mentioned in Subsection III-D).

FASTer FTL: One bug is found in the full merge() proce-
dure, which is responsible for collecting data from a victim
log block to a data block (Figure 4). Under some conditions,
the victim block happens to be a sequentially-written block,
and the full merge task can be completed by a partial merge
(Lines 5 to 10). At the end of the full merge procedure, a
new log block is allocated (Lines 12 to 14). FASTer FTL is
buggy because, at Line 8 (Line 1558 of the original code), the
full merge() procedure returns and misses to check whether
allocating a new block is needed like what Lines 12 to 14 do.

Greedy FTL: Two bugs are found in Greedy FTL. Both
result in skipping the first page of a block when an SSD is
powered on for the very first time. This situation is a bug
because Greedy FTL is not designed to exploit the benefits
of violating this rule (as mentioned in Subsection III-D). The
first bug is in the assign new write vpn() procedure (Line 15
of Figure 5 or Line 598 of the original code). The other is
in the logging pmap table() function (Line 6 of Figure 6 or
Line 910 of the original code).



0

0.5

1

1.5

2

2.5

3

3.5

h
m

_0

m
d

s_
0

p
rn

_
0

p
ro

j_
0

p
rx

y_
0

p
rx

y_
1

rs
rc

h
_0

sr
c1

_
0

sr
c1

_
2

sr
c2

_
0

sr
c2

_
2

st
g_

0

ts
_0

u
sr

_0

w
d

ev
_0

w
eb

_0

R
W

 t
o

 T
ri

gg
er

 t
h

e 
B

u
g 

(T
B

) The bug occurs The bug does not occur at all

Fig. 7. RW amount to trigger the bug of FASTer

0

20

40

60

h
m

_0

m
d

s_
0

p
rn

_0

p
ro

j_
0

p
rx

y_
0

p
rx

y_
1

rs
rc

h
_0

sr
c1

_
0

sr
c1

_
2

sr
c2

_
0

sr
c2

_
2

st
g_

0

ts
_0

u
sr

_0

w
d

ev
_0

w
eb

_0

Te
st

in
g 

Ti
m

e 
(s

)

Fig. 8. Testing time for Greedy FTL

B. FTL Testing Speed

Table II lists 16 disk IO traces [29] we use to drive VST. We
select traces with a sufficient write amount (≥ 3 GB writes
and a write-to-read ratio of ≥ 20%) to stress test SSDs. We
align traces to 8 KB address boundaries and repeat each trace
with an LBA offset till the write amount reaches 1 TB. Please
note that traces are not a must for VST because one can let
VST synthesize random requests internally instead.

Figure 7 shows the amount of read and write requests
required before the bug of FASTer is triggered. Although these
numbers are obtained using VST, they can estimate the number
for real SSD stress tests, too. Out of the 16 traces, ten traces
do not trigger the bug to appear at all. For the other six traces,
up to 1.8 TB of accesses are needed before the bug occurs.
These results confirm that the bug is hard to find without a
sufficiently large stress test scale.

Greedy and DAC FTLs are immediately detected buggy
by VST for all 16 traces due to the existence of the non-
sequential page write bugs. Even though, we want to point out
that the non-sequential page write bugs (and the consequences
of violating the MLC flash rule) are in fact hard to reproduce
or debug using real SSDs because the bugs only occur once
when an SSD is powered on for the very first time.

We fix the seven bugs founded in the three FTLs and
conduct the following tests. Figure 8 demonstrates the testing
speed advantage of VST. It takes only 4.8 to 55 seconds for
VST to complete Greedy FTL tests using one trace. The differ-

0

50

100

150

200

250

300

350

h
m

_0

m
d

s_
0

p
rn

_0

p
ro

j_
0

p
rx

y_
0

p
rx

y_
1

rs
rc

h
_0

sr
c1

_
0

sr
c1

_
2

sr
c2

_
0

sr
c2

_
2

st
g_

0

ts
_0

u
sr

_0

w
d

ev
_0

w
eb

_0

Te
st

in
g 

Sp
ee

d
 (

G
B

/s
)

Fig. 9. Testing speed for Greedy FTL

0

20

40

60

80

100

120

Greedy DAC FASTer
A

gg
re

ga
te

 T
es

ti
n

g 
Sp

ee
d

 (
G

B
/s

)

Fig. 10. Testing speed for three FTLs

ences in the required testing time result from different write
randomness and different read-to-write ratios among traces.
In comparison, as mentioned in Section I, if one performs the
tests on a real SSD with 0.73 GB/s write performance [4], each
trace would take more than 23 minutes to complete because
each trace contains 1 TB writes and additional reads.

Figure 9 shows that the effective throughput of VST with
the Greedy FTL ranges from 39 GB/s to 332 GB/s. Figure 10
shows that the effective throughput for VST to test the three
FTLs is 55 GB/s to 111 GB/s over 16 traces.

VST is superior in scalability to conventional real SSD-
based tests. For instance, by leveraging servers or cloud
computing services, a massive number of VST tests can be
instantiated in parallel. Figure 11 shows that just one four-core
PC can offer up to 375 GB/s of aggregate testing throughput,
which is several hundred times higher than a real mainstream
SSD. Without VST, the cost and difficulties of setting up
and maintaining such massive number of real SSDs and their
associated testing equipment would be significant.

V. CONCLUSIONS

This work proposes VST, a framework for FTL developers
to execute, test, and debug SSD FTL firmware on PCs or
servers. VST addresses the challenges that 1) FTL firmware is
increasingly complex and intricate, and testing and validating
FTLs are crucial and challenging tasks, 2) real SSD-based tests
have limitations in speed, 3) it is hard to root-cause failures
occurring during real SSD-based FTL tests, and 4) existing



0

50

100

150

200

250

300

350

400

1 2 4

A
gg

re
ga

te
 T

es
ti

n
g 

Sp
ee

d
 (

G
B

/s
)

Number of VST Instances

Greedy DAC FASTer

Fig. 11. Parallel testing speeds using multiple cores

SSD simulators are not designed and optimized to test real-
world FTLs at a high speed. We apply VST to OpenSSD [1]
to evaluate the speed and effectiveness of VST. Experimental
results show that VST can perform FTL tests at a speed of 111
GB/s using single host CPU core and up to 375 GB/s using
four host CPU cores. We successfully discover seven new bugs
in the latest OpenSSD FTLs, which is a solid evidence of
VST’s bug-discovering effectiveness.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
feedback. This work is supported in part by the Ministry
of Science and Technology (MOST) of Taiwan under grants
105-2218-E-007-023-, 106-2218-E-007-002-, and 106-2221-
E-007-125-.

REFERENCES

[1] Jasmine OpenSSD platform. http://www.openssd-
project.org/wiki/Jasmine OpenSSD Platform.

[2] NANDsim. http://manpages.ubuntu.com/manpages
/xenial/man4/nandsim.4freebsd.html.

[3] PassMark BurnInTest. http://www.passmark.com/products/bit.htm.
[4] Samsung SSD 960 PRO 512GB benchamarks.

http://ssd.userbenchmark.com/SpeedTest/182182/
Samsung-SSD-960-PRO-512GB.

[5] N. Agrawal, L. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Emulating goliath storage systems with david. In USENIX
Conference on File and Storage Technologies (FAST), 2011.

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for SSD performance. In USENIX Annual
Technical Conference (USENIX ATC), 2008.

[7] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for high-
performance flash disks. SIGOPS Oper. Syst. Rev., 41:88–93, April 2007.

[8] M. Bjørling, J. González, and P. Bonnet. LightNVM: The Linux open-
channel SSD subsystem. In USENIX Conference on File and Storage
Technologies (FAST), 2017.

[9] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger. The DiskSim
simulation environment version 4.0 reference manual reference manual
(CMU-PDL-08-101). Technical report, Parallel Data Laboratory, 2008.

[10] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation.
In International Conference on Computer Design (ICCD), 2013.

[11] C.-W. Chang, G.-Y. Chen, Y.-J. Chen, C.-W. Yeh, P.-Y. Eng, A. Cheung,
and C.-L. Yang. Exploiting write heterogeneity of morphable MLC/SLC
SSDs in datacenters with service-level objectives. IEEE Trans. Comput.,
66(8):1457–1463, Aug 2017.

[12] L.-P. Chang, C.-H. Cheng, and K.-H. Lin. A flash scheduling strategy
for current capping in multi-power-mode ssds. In Asia and South Pacific
Design Automation Conference (ASP-DAC), 2017.

[13] Y.-M. Chang, Y.-H. Chang, J.-J. Chen, T.-W. Kuo, H.-P. Li, and H.-T.
Lue. On trading wear-leveling with heal-leveling. In Design Automation
Conference (DAC), 2014.

[14] T.-Y. Chen, Y.-H. Chang, C.-C. Ho, and S.-H. Chen. Enabling sub-
blocks erase management to boost the performance of 3D NAND flash
memory. In Design Automation Conference (DAC), 2016.

[15] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using data clustering to
improve cleaning performance for plash memory. Softw. Pract. Exper.,
29(3):267–290, Mar. 1999.

[16] A. Cristal. Flash correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In International Conference on
Computer Design (ICCD), 2012.

[17] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing flash memory: Anomalies,
observations, and applications. In International Symposium on Microar-
chitecture (MICRO), 2009.

[18] L. M. Grupp, J. D. Davis, and S. Swanson. The harey tortoise: Managing
heterogeneous write performance in SSDs. In USENIX Conference on
Annual Technical Conference (ATC), 2013.

[19] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2009.

[20] S. Im and D. Shin. ComboFTL: Improving performance and lifespan of
MLC flash memory using SLC flash buffer. J. Syst. Archit., 56(12):641–
653, Dec. 2010.

[21] J. Jeong, Y. Song, S. S. Hahn, S. Lee, and J. Kim. Dynamic erase
voltage and time scaling for extending lifetime of NAND flash-based
SSDs. IEEE Trans. Comput., 66(4):616–630, April 2017.

[22] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson. KAML: A
flexible, high-performance key-value SSD. In International Symposium
on High Performance Computer Architecture (HPCA), 2017.

[23] M. Jung, E. H. Wilson, D. Donofrio, J. Shalf, and M. T. Kandemir.
NANDFlashSim: Intrinsic latency variation aware NAND flash memory
system modeling and simulation at microarchitecture level. In Sympo-
sium on Mass Storage Systems and Technologies (MSST), 2012.

[24] S.-P. Lim, S.-W. Lee, and B. Moon. FASTer FTL for enterprise-class
flash memory SSDs. In Workshop on Storage Network Architecture and
Parallel I/Os (SNAPI), 2010.

[25] R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li, K.-C. Ho, and H.-P.
Li. EC-Cache: Exploiting error locality to optimize LDPC in NAND
flash-based SSDs. In Design Automation Conference (DAC), 2014.

[26] R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li, K.-C. Ho, and H.-P. Li.
Improving read performance of NAND flash SSDs by exploiting error
locality. IEEE Trans. Comput., 65(4):1090–1102, April 2016.

[27] R.-S. Liu, C.-L. Yang, and W. Wu. Optimizing NAND flash-based SSDs
via retention relaxation. In USENIX Conference on File and Storage
Technologies (FAST), 2012.

[28] F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and
A. Brinkmann. The devil is in the details: Implementing flash page
reuse with WOM codes. In USENIX Conference on File and Storage
Technologies (FAST), 2016.

[29] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage,
4:10:1–10:23, November 2008.

[30] M.-C. Yang, Y.-H. Chang, C.-W. Tsao, and P.-C. Huang. New ERA:
New efficient reliability-aware wear leveling for endurance enhancement
of flash storage devices. In Design Automation Conference (DAC), 2013.

[31] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. De-indirection for flash-based SSDs with nameless writes.
In USENIX Conference on File and Storage Technologies (FAST), 2012.

[32] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, and T. Zhang. LDPC-in-
SSD: Making advanced error correction codes work effectively in solid
state drives. In USENIX Conference on File and Storage Technologies
(FAST), 2013.


