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Solid-State Drives (SSDs)
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• Inherit the interface and a weak guarantee from HDDs
• Permit persisting write requests in an arbitrary order

• Implication to FS and DBS
• Need to frequently flush SSDs to ensure order
• At the cost of performance degradation
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Order-Preserving SSDs (OP-SSDs)
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•Strong request-level guarantees
• Persist all write requests in order
• Persist each write request atomically (a bonus)

• Invariants
• Identical interface to existing 

software, i.e., read, write, and flush
•Comparable performance 

to traditional SSDs



Traditional SSD: Weak Crash Guarantees

•Write requests can be persisted out-of-order
• Each write request can be partially complete

Ti
m

e W1

W2

W3

crash

8 512-byte sectors

…

Valid post-crash states

# of valid post-crash states: 26



OP-SSD: Strong Crash Guarantees

•Write requests are persisted in-order
• Each write request is atomic, regardless of its size
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OP-SSDs in Computer Systems
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• Optimize existing FS and DBS
• Remove unnecessary flushes
• Practical and manageable because

OP-SSDs keep the interface intact

• Inspire new FS and DBS
• Exploit the strong crash guarantees

•New SSD industrial standard
•New SSD research area
• Flash-translation layers (FTLs)
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Outline
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•Order-preserving SSDs
•Background
•Order-preserving design
• System optimizations and evaluation
•Conclusion



Background: A Simple SSD Model
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• FTL (flash translation layer) performs 
logical-to-physical address mapping
• Constraint of flash: No in-place update 

• High performance schemes
• Flash parallelism
• Request reordering
• Write cache

• Garbage collection
• Crash recovery

Request 
Queue

FTL

Write Cache

…

Flash Chip Array

Flash
chip

…Blk Flash
chip

Translation GC

Breaking the order!

SSD



Background: GC and SSD Recovery
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• GC is required to reclaim space for future writes
• Crash recovery: Since L2P table is kept in RAM, FTL has to 

reconstruct the L2P table after a crash 
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Goal of Order-Preserving Design 
•High performance schemes are still kept
• Flash parallelism
• Request reordering
• Write cache (coalescing)

•Write requests are not necessarily processed in order
• Recovery procedure of FTL is extended
• Rollback SSD to a desired state
• Create an order-preserving illusion
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An Incomplete SSD Model
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• Let’s first assume an SSD without a 
write cache and GC
• We’ll remove these (impractical) 

assumptions in a minute
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Order-Preserving Recovery
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• Idea: During recovery, if we know exactly which writes are 
complete, we can recover until the first incomplete write
• E.g., if the 1st, 2nd, 3rd, 5th writes are complete, then we can simply 

recover the first three writes, but not any other write

• Write completion tracking: If a write contains N pages, and 
during recovery, we find N pages for the write, then the write is 
indeed complete; otherwise, the write is incomplete



Order-Preserving Recovery
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Status Condition
Complete # pages found = size

Incomplete # pages found < size
user data
(8 - 32 KB)

spare area (1-4 KB)Flash Page

ecc
lpn

wid
size

• wid (8 B): a sequence number assigned to a write according 
to the order in which writes are received by the SSD

• size (4 B): the number of pages the write contains



Recovery Procedure (without write cache and GC)
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• Read out all the programmed pages
• Determine whether each write is complete or incomplete
• Construct a flow network with each node representing a 

write request and each edge pointing from Wi to Wi+1

• Find a s-t cut 𝐶 = 𝑆, 𝑇 such that
• Every write in 𝑆 is complete
• |𝑆| is maximized

• Recover all and only the writes in 𝑆
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Support for Write Coalescing
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• Write coalescing improves performance and lifetime
• Challenge: The number of pages found during recovery can 

no longer match the number of pages the write contains
• Naïve solution: Forbid write coalescing
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Write Coalescing Tracking
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• Coalescing records keep track of coalescing events
• Recovery procedure expect one less page for each record
• Write requests that coalesce are atomic as a whole

• A batch of coalescing records are written to flash when the 
buffer is full or upon receiving a flush request
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Support for Garbage Collection
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• The job of a garbage collector is to reclaim invalid pages
• However, our recovery procedure relies on these invalid 

pages to determine whether each write is complete
• Solution: Mapping table checkpoint
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Mapping Table Checkpointing
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• Perform incremental and full checkpoint
• Once a checkpoint is successfully created, all write requests 

prior to the checkpoint is guaranteed recoverable
• Restrict GC to only reclaim pages programmed before a 

checkpoint
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Recovery Procedure (with write cache and GC)
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• Sequentially apply all checkpoints
• Read out all the pages programmed after the latest chkpt
• Read out all the coalescing records created after the latest chkpt
• Determine whether each write is incomplete or non-incomplete
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Recovery Procedure (with write cache and GC)
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• Construct a flow network with each node representing a write 
request, each directed edge pointing from Wi to Wi+1, and each bent 
edge pointing from x to y for each coalescing record <x, y, sizex> 
• Find a s-t cut 𝐶 = 𝑆, 𝑇 such that
• No writes in 𝑆 are incomplete
• |𝑆| is maximized
• The cut size is equal to one

• Recover all and only the writes in 𝑆
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System Optimizations and Evaluation
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Virtual Stress Test
(VST) Framework



System Optimizations and Evaluation
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Baseline Systems
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Systems Using Transactional SSDs

24

Minor

Performance

Significant

System Changes

Transactional SSD
Significant changes



1st System Optimization with OP-SSDs
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2nd System Optimization with OP-SSDs
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3rd System Optimization with OP-SSDs
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Conclusion
•We propose order-preserving SSDs
• Strong request-level guarantees
• Persist all write requests in order
• Persist each write request atomically

• Impacts of OP-SSDs to computer systems
• Optimize existing FS and DBS
• Inspire new FS and DBS
• New SSD industrial standard
• New SSD research area
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Future work

à Show three optimizations 

à Realize a prototype
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Order-Preserving SSDs
Thank You!
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