
Determinizing Crash Behavior with a Verified
Snapshot-Consistent Flash Translation Layer

Yun-Sheng Chang Yao Hsiao Tzu-Chi Lin Che-Wei Tsao Chun-Feng Wu
Yuan-Hao Chang Hsiang-Shang Ko Yu-Fang Chen

Institute of Information Science, Academia Sinica, Taiwan



SCFTL overview

Simple and useful specification: the snapshot-consistent disk model

• guarantee snapshot consistency
• expose the standard read-write-flush interface

Good performance

• exploit the out-of-place update nature of FTLs
• use an efficient checkpointing algorithm

Formally verified against its specification

1



Storage stack

Correctness and performance of uppers layers are often determined by the
guarantee provided by their lower layers. However, upper layers often have to
make minimal assumptions about the lower layers.

• For example, file systems usually assume the underlying disk follows the
asynchronous disk model, which has no guarantees about writes after the last flush.

Application

File system

Disk

syscall0

write0 write1 write2 write3 write4

syscall1

crash

partial effect

2



Storage stack

Correctness and performance of uppers layers are often determined by the
guarantee provided by their lower layers. However, upper layers often have to
make minimal assumptions about the lower layers.

• For example, file systems usually assume the underlying disk follows the
asynchronous disk model, which has no guarantees about writes after the last flush.

Application

File system

Disk

syscall0

write0 write1 write2 write3 write4

syscall1

crash

partial effect

2



Storage stack

Correctness and performance of uppers layers are often determined by the
guarantee provided by their lower layers. However, upper layers often have to
make minimal assumptions about the lower layers.

• For example, file systems usually assume the underlying disk follows the
asynchronous disk model, which has no guarantees about writes after the last flush.

Application

File system

Async disk

syscall0

write0 write1 write2 write3 write4

syscall1

crash

partial effect

2



Storage stack

Correctness and performance of uppers layers are often determined by the
guarantee provided by their lower layers. However, upper layers often have to
make minimal assumptions about the lower layers.

• For example, file systems usually assume the underlying disk follows the
asynchronous disk model, which has no guarantees about writes after the last flush.

Application

File system

Async disk

syscall0

write0 write1 write2 write3 write4

syscall1

crash

partial effect 2



Crash recovery mechanism

File systems usually use a crash recovery mechanism (e.g., a write-ahead log).

• Hard to get it right because the crash behavior is complicated: B3 (OSDI ’18)
• Verified crash-safe file systems: FSCQ (SOSP ’15), Yxv6 (OSDI ’16), BilbyFS (ASPLOS ’16),
and DFSCQ (SOSP ’17)

• Performance overhead due to data replication and write barriers

Application

File system

Async disk

syscall0

write0 write1 write2 write3 write4

syscall1

log
flush writecommit flush write0 ... write4

fsync

log

the same data is written twice

expensive write barrier

3



Crash recovery mechanism

File systems usually use a crash recovery mechanism (e.g., a write-ahead log).

• Hard to get it right because the crash behavior is complicated: B3 (OSDI ’18)
• Verified crash-safe file systems: FSCQ (SOSP ’15), Yxv6 (OSDI ’16), BilbyFS (ASPLOS ’16),
and DFSCQ (SOSP ’17)

• Performance overhead due to data replication and write barriers

Application

File system

Async disk

syscall0

write0 write1 write2 write3 write4

syscall1

log
flush writecommit flush write0 ... write4

fsync

log

the same data is written twice

expensive write barrier

3



Reducing the overhead through optimizations

Some optimizations can reduce the overhead, but they often compromise the
crash guarantee file systems are able to provide:

• bypassing the log for data breaks the order between metadata and data updates

• crash vulnerabilities in widely used applications (Pillai et al., OSDI ’14) and ACID
violations in database systems (Zheng et al., OSDI ’14)

Application

File system

Async disk

syscallmetadata

write0 write1 write2 write3 write4

syscalldata

log
flush writecommit flush write0 write1

fsync

log

bypassing the log

crash

the second syscall survives across the crash but the first does not

4



Reducing the overhead through optimizations

Some optimizations can reduce the overhead, but they often compromise the
crash guarantee file systems are able to provide:

• bypassing the log for data breaks the order between metadata and data updates

• crash vulnerabilities in widely used applications (Pillai et al., OSDI ’14) and ACID
violations in database systems (Zheng et al., OSDI ’14)

Application

File system

Async disk

syscallmetadata

write0 write1 write2 write3 write4

syscalldata

log
flush writecommit flush write0 write1

fsync

log

bypassing the log

crash

the second syscall survives across the crash but the first does not

4



Reducing the overhead through optimizations

Some optimizations can reduce the overhead, but they often compromise the
crash guarantee file systems are able to provide:

• bypassing the log for data breaks the order between metadata and data updates
• crash vulnerabilities in widely used applications (Pillai et al., OSDI ’14) and ACID
violations in database systems (Zheng et al., OSDI ’14)

Application

File system

Async disk

syscallmetadata

write0 write1 write2 write3 write4

syscalldata

log
flush writecommit flush write0 write1

fsync

log

bypassing the log

crash

the second syscall survives across the crash but the first does not

4



Prior work: Providing a stronger crash guarantee at the disk level

OPTR (ATC ’19) and BarrierFS (FAST ’18) propose order-preserving disk models,
which preserve the order of disk operations across crashes.

• We can remove some flushes that are used to enforce ordering constraints

Application

File system

OP disk

OP = order-preserving

syscall0

write0 write1 write2 write3 write4

syscall1

log
flush writecommit flush write0 ... write4

fsync

remove this write barrier

5



Comparison of disk models

x8 y6 z0

Disk with 3 sectors

Time

crash

write(2, z1)

write(0, x9)

flush

Allowed crash behavior
(n is the number of writes after the last flush)

Asynchronous disk model: 2n post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Order-preserving disk model (ATC ’19): n+ 1 post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Snapshot-consistent disk model (this work): 1 post-crash state

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

6



Comparison of disk models

x8 y6 z0

Disk with 3 sectors

Time

crash

write(2, z1)

write(0, x9)

flush

Allowed crash behavior
(n is the number of writes after the last flush)

Asynchronous disk model: 2n post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Order-preserving disk model (ATC ’19): n+ 1 post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Snapshot-consistent disk model (this work): 1 post-crash state

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

6



Snapshot-consistent disk model

Moreover, we can easily model this behavior with two arrays:

• volatile represents the disk state observable to the users, and
• stable captures the disk state right before the last flush.

x8 y6 z0 x8 y6 z0 x9 y6 z0 x8 y6 z0volatile

Original state
write(0, x9) read(2)

flush() recovery()

x0 y2 z0 x8 y6 z0x8 y6 z0 x8 y6 z0stable

See the paper for the formal specification!
7



Snapshot consistency

Snapshot consistency ensures the atomicity of multiple disk writes between two
consecutive flushes.

• File systems can simply call a flush to commit a transaction.
• Data are only written once and no write barriers are required.

Application

File system

SC disk

SC = snapshot-consistent

syscall0

write0 write1 write2 write3 write4

syscall1

flush

fsync

8



SCFTL design highlight

Goals

• guarantee snapshot consistency
• maintain a good performance

Main techniques

• Checkpointing: remember the disk state right before the last flush
• Two-phase garbage collection (2PGC): prevent premature erasure

9



Flash memory and FTL basics

Flash memory has a few intrinsic device characteristics:

• a page has to be erased before being written to.
• the basic unit for write is a page,
• but the basic unit for erase is a block (multiple pages).

Most flash disks come with a flash translation layer (FTL), which

• implements the disk interface using flash operations, and
• performs out-of-place update with a logical-to-physical table (L2P).

10



Out-of-place update with L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 3
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5 6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Out-of-place update with L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 3
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5 6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Out-of-place update with L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 3
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

put d in a free page
6

Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Out-of-place update with L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5 update the L2P entry to point to the page
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Out-of-place update with L2P

Notice that all the old data remain intact at their previous
locations, so if SCFTL can remember where the old data are,
then it can rollback to the previous disk state after recovery.

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Remembering the disk state with the stable L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5
1 4
2 0

L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Remembering the disk state with the stable L2P

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5
1 4
2 0

Volatile L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6
Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Remembering the disk state with the stable L2P

A write operation only modifies the volatile L2P, but not the
stable L2P.

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5
1 6
2 0

Volatile L2P (in memory)

LA PA

0 3
1 4
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6

d′

Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Remembering the disk state with the stable L2P

A flush operation copies the volatile L2P to the stable L2P.

Handling request:
write(0,d)
write(1,d′)
flush()

LA PA

0 5
1 6
2 0

Volatile L2P (in memory)

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

0 1 2 3 4 5

d

6

d′

Physical address (PA)

Data region (in flash)

delta
pairs

C
Yes

delta
pairs

T
Yes

delta
pairs

C
Yes

delta
pairs

T
No

Visible to the recovery procedure?
No No Yes No

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

11



Full checkpointing

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X

Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

Delta buffer

C
L2P L2P

shadow
host
data

Delta region

Full checkpoint region Data region

store a full image of L2P

12



Delta checkpointing

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X

Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

Delta buffer

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region 12



Delta checkpointing

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X

Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

Delta buffer

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

add a delta pair (la, pa) whenever
the volatile L2P is modified

12



Delta checkpointing

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

Delta buffer

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region 12



Delta checkpointing

LA PA

0 5
1 6
2 0

Stable L2P (in flash)

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

Delta buffer

C
L2P L2P

shadow
host
data

Delta region Full checkpoint region Data region

committed not committed

12



Standard garbage collection (GC)

Standard GC workflow

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block
• erase the victim block

Problem with standard GC: Data referred by the stable L2P may be deleted by the
garbage collector.

Naïve solution: Also relocate data referred by the stable L2P.

• incur performance and memory overhead
• complicate the recovery procedure

13



Standard garbage collection (GC)

Standard GC workflow

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block
• erase the victim block

Problem with standard GC: Data referred by the stable L2P may be deleted by the
garbage collector.

Naïve solution: Also relocate data referred by the stable L2P.

• incur performance and memory overhead
• complicate the recovery procedure

13



Standard garbage collection (GC)

Standard GC workflow

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block
• erase the victim block

Problem with standard GC: Data referred by the stable L2P may be deleted by the
garbage collector.

Naïve solution: Also relocate data referred by the stable L2P.

• incur performance and memory overhead
• complicate the recovery procedure

13



Two-phase garbage collection (2PGC)

2PGC workflow (relocation phase)

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block

2PGC workflow (erasure phase)

• erase the victim block

The erasure phase is delayed until a flush is invoked.

• the old data are no longer referred by the stable L2P after a flush.

14



Verifying SCFTL implementation against its specification

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region 15



Verifying SCFTL implementation against its specification

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

Abstraction relations capture how a state in the implementation
is interpreted as a state in the specification.

15



Verifying SCFTL implementation against its specification

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

Representation invariants describe properties that
should be satisfied by various data structures in
an implementation state.

15



Examples: Abstration relations and representation invariants

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

The volatile array in the specification is implemented by look-
ing up physical addresses in the in-memory L2P, and indexing
the data region with the addresses to find the contents.

16



Examples: Abstration relations and representation invariants

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

The stable array in the specification is implemented by look-
ing up physical addresses in a committed in-flash L2P and in
the committed delta pairs, and indexing the data region with
the addresses to find the contents.

16



Examples: Abstration relations and representation invariants

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

At least one in-flash L2P is committed.

16



Examples: Abstration relations and representation invariants

Implementation

LA PA

0 3
1 4
2 0

L2P (in memory)

Specification
x8 y6 z0volatile

x0 y2 z0stable

delta
pairs

C delta
pairs

T delta
pairs

C delta
pairs

T

delta
pairs

X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
L2P L2P

shadow

Delta region Full checkpoint region

host
data

Data region

Starting with a committed in-flash L2P and applying
all delta pairs in the delta region and in the delta
buffer should yield the in-memory L2P.

16



Crash-safety simulation

With proper abstraction relations and representation invariants, we then use the
symbolic executor Serval [SOSP ’19] and the SMT solver Z3 to prove that the
implementation and the specification establishes a forward simulation:

• successful operations preserve AR and RI

• the relationship deteriorates to CR and CI on crashed operations
• crashed recovery preserves CR and CI
• the relationship restores to AR and RI on successful recovery

s1 s2 s3

t1 t2 t3
AR

wa,d

wa,d
AR

f

f
AR

implementation state

specification state

17



Crash-safety simulation

With proper abstraction relations and representation invariants, we then use the
symbolic executor Serval [SOSP ’19] and the SMT solver Z3 to prove that the
implementation and the specification establishes a forward simulation:

• successful operations preserve AR and RI
• the relationship deteriorates to CR and CI on crashed operations

• crashed recovery preserves CR and CI
• the relationship restores to AR and RI on successful recovery

s1 s2 s3 s4

t1 t2 t3 t4
AR

wa,d

wa,d
AR

f

f
AR

wc
a′,d′

wc
a′,d′
CR

implementation state

specification state

The weaker abstraction relation CR and representation
invariant CI should:

• describe only the properties about flash states
• be weak enough to hold even with crash reordering,
but strong enough to allow a successful recovery

17



Crash-safety simulation

With proper abstraction relations and representation invariants, we then use the
symbolic executor Serval [SOSP ’19] and the SMT solver Z3 to prove that the
implementation and the specification establishes a forward simulation:

• successful operations preserve AR and RI
• the relationship deteriorates to CR and CI on crashed operations
• crashed recovery preserves CR and CI

• the relationship restores to AR and RI on successful recovery

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5
AR

wa,d

wa,d
AR

f

f
AR

wc
a′,d′

wc
a′,d′
CR

rc

rc
CR

implementation state

specification state

17



Crash-safety simulation

With proper abstraction relations and representation invariants, we then use the
symbolic executor Serval [SOSP ’19] and the SMT solver Z3 to prove that the
implementation and the specification establishes a forward simulation:

• successful operations preserve AR and RI
• the relationship deteriorates to CR and CI on crashed operations
• crashed recovery preserves CR and CI
• the relationship restores to AR and RI on successful recovery

s1 s2 s3 s4 s5 s6

t1 t2 t3 t4 t5 t6
AR

wa,d

wa,d
AR

f

f
AR

wc
a′,d′

wc
a′,d′
CR

rc

rc
CR

r

r
AR · · ·

implementation state

specification state

17



Evaluation: 4-KB random writes

We used the Linux LightNVM (FAST ’17) module to host our SCFTL and FEMU (FAST
’18) to emulate flash memory.

We used a disk workload that issues random write requests and invokes a flush
for every given number of writes.

We compared SCFTL with another FTL whose design is similar to SCFTL, except the
FTL follows the asynchronous disk model.

18



Evaluation: 4-KB random writes

WI = 2048 WI = 256 WI = 16 WI = 10

5

10

15

20

25
Th

ro
ug

hp
ut

 (K
 IO

PS
)

pblk (4 thrds) pblk (1 thrd) async sync scftl

When the workload does not flush the disk too
frequently, SCFTL is almost as efficient as the FTL
implementing the asynchronous disk model.

18



Evaluation: 4-KB random writes

WI = 2048 WI = 256 WI = 16 WI = 10

5

10

15

20

25
Th

ro
ug

hp
ut

 (K
 IO

PS
)

pblk (4 thrds) pblk (1 thrd) async sync scftl

But when the workload frequently flush the disk,
SCFTL does not perform very well because flushes
are more expensive in SCFTL.

18



Evaluation: Modifying xv6 with SCFTL

We modified the xv6 file system to support a standard optimization called group
commit and to exploit the strong crash guarantee granted by SCFTL.

We used file system benchmarks to evalute this modification.

19



Evaluation: Modifying xv6 with SCFTL

SQLite smallfiles largefile mailbench0

3

6

9

12
R

el
at

iv
e 

Pe
rf

or
m

an
ce

9 
tx

n/
s

77
 fi

le
/s

0.
6 

M
B

/s

16
 m

sg
/s

11
 t

xn
/s

77
 fi

le
/s

1.
2 

M
B

/s

17
 m

sg
/s

11
 t

xn
/s

68
 fi

le
/s

1.
2 

M
B

/s

14
 m

sg
/s

61
 t

xn
/s

26
4 

fil
e/

s

39
 M

B
/s

12
3 

m
sg

/s

xv6/async xv6/sync xv6-xlog xv6-group

xv6 with group commit on SCFTL outperforms xv6
with logging on conventional FTLs by 3 to 30 times.

19



Evaluation: Comparing xv6 on SCFTL with ext4 on pblk

SQLite smallfiles largefile mailbench0.0

0.5

1.0

1.5

2.0
R

el
at

iv
e 

Pe
rf

or
m

an
ce

93
 t

xn
/s

51
2 

fil
e/

s

63
 M

B
/s

13
2 

m
sg

/s14
2 

tx
n/

s

46
9 

fil
e/

s

27
 M

B
/s

15
3 

m
sg

/s

61
 t

xn
/s

26
4 

fil
e/

s

39
 M

B
/s

12
3 

m
sg

/s

ext4-metadata ext4-data xv6-group

xv6 on SCFTL is at worst two times slower than the state-of-
the-art setting: the ext4 file system on the pblk FTL. Moreover,
xv6 on SCFTL has a stronger crash guarantee than that of ext4
on pblk.

20



Conclusion

SCFTL provides a strong crash guarantee while maintaining a good performance,
and its implementation is formally verified against its specification.

We demonstrate that starting at a lower-level of abstraction can make verifying
crash safety easier while still resulting in an efficient system.

We plan to build an efficient storage stack by exploiting the benefits brought by
SCFTL, and to extend SCFTL with common FTL optimizations, such as wear leveling
and hot-cold data separation.

SCFTL is available at:
https://github.com/yunshengtw/scftl

21

https://github.com/yunshengtw/scftl

