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SCFTL overview

Simple and useful specification: the snapshot-consistent disk model

• guarantee snapshot consistency
• expose the standard read-write-flush interface

Good performance

• exploit the out-of-place update nature of FTLs
• use an efficient checkpointing algorithm

Formally verified against its specification
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Storage stack

Correctness and performance of uppers layers are often determined by the
guarantee provided by their lower layers. However, upper layers often have to
make minimal assumptions about the lower layers.

• For example, file systems usually assume the underlying disk follows the
asynchronous disk model, which has no guarantees about writes after the last flush.
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Crash recovery mechanism

File systems usually use a crash recovery mechanism (e.g., a write-ahead log).

• Hard to get it right because the crash behavior is complicated: B3 (OSDI ’18)
• Verified crash-safe file systems: FSCQ (SOSP ’15), Yxv6 (OSDI ’16), BilbyFS (ASPLOS ’16),
and DFSCQ (SOSP ’17)

• Performance overhead due to data replication and write barriers
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flush writecommit flush write0 ... write4
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log

the same data is written twice

expensive write barrier
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Reducing the overhead through optimizations

Some optimizations can reduce the overhead, but they often compromise the
crash guarantee file systems are able to provide:

• bypassing the log for data breaks the order between metadata and data updates

• crash vulnerabilities in widely used applications (Pillai et al., OSDI ’14) and ACID
violations in database systems (Zheng et al., OSDI ’14)
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log
flush writecommit flush write0 write1

fsync

log

bypassing the log

crash

the second syscall survives across the crash but the first does not
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Prior work: Providing a stronger crash guarantee at the disk level

OPTR (ATC ’19) and BarrierFS (FAST ’18) propose order-preserving disk models,
which preserve the order of disk operations across crashes.

• We can remove some flushes that are used to enforce ordering constraints

Application
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syscall1

log
flush writecommit flush write0 ... write4

fsync

remove this write barrier
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Comparison of disk models

x8 y6 z0

Disk with 3 sectors

Time

crash

write(2, z1)

write(0, x9)

flush

Allowed crash behavior
(n is the number of writes after the last flush)

Asynchronous disk model: 2n post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Order-preserving disk model (ATC ’19): n+ 1 post-crash states

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1

Snapshot-consistent disk model (this work): 1 post-crash state

x8 y6 z0 x9 y6 z0 x8 y6 z1 x9 y6 z1
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Snapshot-consistent disk model

Moreover, we can easily model this behavior with two arrays:

• volatile represents the disk state observable to the users, and
• stable captures the disk state right before the last flush.

x8 y6 z0 x8 y6 z0 x9 y6 z0 x8 y6 z0volatile

Original state
write(0, x9) read(2)

flush() recovery()

x0 y2 z0 x8 y6 z0x8 y6 z0 x8 y6 z0stable

See the paper for the formal specification!
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Snapshot consistency

Snapshot consistency ensures the atomicity of multiple disk writes between two
consecutive flushes.

• File systems can simply call a flush to commit a transaction.
• Data are only written once and no write barriers are required.
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SCFTL design highlight

Goals

• guarantee snapshot consistency
• maintain a good performance

Main techniques

• Checkpointing: remember the disk state right before the last flush
• Two-phase garbage collection (2PGC): prevent premature erasure
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Flash memory and FTL basics

Flash memory has a few intrinsic device characteristics:

• a page has to be erased before being written to.
• the basic unit for write is a page,
• but the basic unit for erase is a block (multiple pages).

Most flash disks come with a flash translation layer (FTL), which

• implements the disk interface using flash operations, and
• performs out-of-place update with a logical-to-physical table (L2P).
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Out-of-place update with L2P

Handling request:
write(0,d)
write(1,d′)
flush()
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T
No

Visible to the recovery procedure?
No No Yes No
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X Delta buffer
X = Committed if triggered by a flush
X = Tentative otherwise

C
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host
data

Delta region Full checkpoint region Data region
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Out-of-place update with L2P
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Out-of-place update with L2P

Notice that all the old data remain intact at their previous
locations, so if SCFTL can remember where the old data are,
then it can rollback to the previous disk state after recovery.

Handling request:
write(0,d)
write(1,d′)
flush()
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Remembering the disk state with the stable L2P

Handling request:
write(0,d)
write(1,d′)
flush()
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Remembering the disk state with the stable L2P
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Remembering the disk state with the stable L2P

A write operation only modifies the volatile L2P, but not the
stable L2P.

Handling request:
write(0,d)
write(1,d′)
flush()
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Remembering the disk state with the stable L2P

A flush operation copies the volatile L2P to the stable L2P.

Handling request:
write(0,d)
write(1,d′)
flush()
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Full checkpointing
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store a full image of L2P
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Delta checkpointing
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Delta checkpointing
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add a delta pair (la, pa) whenever
the volatile L2P is modified
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Delta checkpointing
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Delta checkpointing
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Standard garbage collection (GC)

Standard GC workflow

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block
• erase the victim block

Problem with standard GC: Data referred by the stable L2P may be deleted by the
garbage collector.

Naïve solution: Also relocate data referred by the stable L2P.

• incur performance and memory overhead
• complicate the recovery procedure
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Two-phase garbage collection (2PGC)

2PGC workflow (relocation phase)

• choose a victim block
• relocate valid data (those referred by the volatile L2P) in the victim block

2PGC workflow (erasure phase)

• erase the victim block

The erasure phase is delayed until a flush is invoked.

• the old data are no longer referred by the stable L2P after a flush.
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Verifying SCFTL implementation against its specification

Implementation

LA PA
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Abstraction relations capture how a state in the implementation
is interpreted as a state in the specification.
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Verifying SCFTL implementation against its specification

Implementation
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Representation invariants describe properties that
should be satisfied by various data structures in
an implementation state.
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Examples: Abstration relations and representation invariants

Implementation
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The volatile array in the specification is implemented by look-
ing up physical addresses in the in-memory L2P, and indexing
the data region with the addresses to find the contents.
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The stable array in the specification is implemented by look-
ing up physical addresses in a committed in-flash L2P and in
the committed delta pairs, and indexing the data region with
the addresses to find the contents.
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At least one in-flash L2P is committed.
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Starting with a committed in-flash L2P and applying
all delta pairs in the delta region and in the delta
buffer should yield the in-memory L2P.
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Crash-safety simulation

With proper abstraction relations and representation invariants, we then use the
symbolic executor Serval [SOSP ’19] and the SMT solver Z3 to prove that the
implementation and the specification establishes a forward simulation:

• successful operations preserve AR and RI

• the relationship deteriorates to CR and CI on crashed operations
• crashed recovery preserves CR and CI
• the relationship restores to AR and RI on successful recovery

s1 s2 s3

t1 t2 t3
AR

wa,d

wa,d
AR

f

f
AR

implementation state

specification state
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The weaker abstraction relation CR and representation
invariant CI should:

• describe only the properties about flash states
• be weak enough to hold even with crash reordering,
but strong enough to allow a successful recovery
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Evaluation: 4-KB random writes

We used the Linux LightNVM (FAST ’17) module to host our SCFTL and FEMU (FAST
’18) to emulate flash memory.

We used a disk workload that issues random write requests and invokes a flush
for every given number of writes.

We compared SCFTL with another FTL whose design is similar to SCFTL, except the
FTL follows the asynchronous disk model.
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Evaluation: 4-KB random writes
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When the workload does not flush the disk too
frequently, SCFTL is almost as efficient as the FTL
implementing the asynchronous disk model.
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But when the workload frequently flush the disk,
SCFTL does not perform very well because flushes
are more expensive in SCFTL.
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Evaluation: Modifying xv6 with SCFTL

We modified the xv6 file system to support a standard optimization called group
commit and to exploit the strong crash guarantee granted by SCFTL.

We used file system benchmarks to evalute this modification.
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Evaluation: Modifying xv6 with SCFTL
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xv6 with group commit on SCFTL outperforms xv6
with logging on conventional FTLs by 3 to 30 times.
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Evaluation: Comparing xv6 on SCFTL with ext4 on pblk
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xv6 on SCFTL is at worst two times slower than the state-of-
the-art setting: the ext4 file system on the pblk FTL. Moreover,
xv6 on SCFTL has a stronger crash guarantee than that of ext4
on pblk.
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Conclusion

SCFTL provides a strong crash guarantee while maintaining a good performance,
and its implementation is formally verified against its specification.

We demonstrate that starting at a lower-level of abstraction can make verifying
crash safety easier while still resulting in an efficient system.

We plan to build an efficient storage stack by exploiting the benefits brought by
SCFTL, and to extend SCFTL with common FTL optimizations, such as wear leveling
and hot-cold data separation.

SCFTL is available at:
https://github.com/yunshengtw/scftl
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