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Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques
- Multi-version concurrency control (MVCC), contention-free data structures, etc.
Hard to implement a correct and high-performance transaction layer
- Zheng et al. [OSDI "14], Elle [VLDB "20], TxCheck [OSDI "23], etc.
Transaction bugs can lead to severe consequences

- Corrupted databases, data losses, security issues, etc.
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Benefit of formal verification

Proof establishing strictly serializable execution of transactions
= a wide range of bugs are eliminated

- Race conditions

« Qut-of-bound accesses

« Off-by-one errors

« Incorrect garbage collection (GC) of versions
- Violation of timestamp monotonicity
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Challenges

1. Requiring a specification for strictly serializable transactions
2. Proving MVCC transactions execute in some total order despite reordering

3. Reasoning about garbage collection (GC) and RDTSC-based timestamps
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Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

- High-performance Go implementation including GC and RDTSC-based timestamps
- Succinct and application-friendly specification
- Proof adopting prophecy variables [LICS '88] for MVCC transaction linearization
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Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

begin body commit
Txn A f f J |
r(k,v) r(k,v)

Valueof kR } 6 a): 6 v+1 >
wait until lock on k is released by Txn A

r(R,v) w(Rk,v+1)

Txn B f t }
begin body commit



Benefit of MVCC: More concurrency

Keeping past values to improve concurrency

begin body commit
Txn A f f J |
r(k,v) r(k,v)
Valuesof R  t v] > v,v+1] ——
no need to wait until Txn A commits
r(R,v) w(k,v+1)
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begin body commit



Benefit of MVCC: More concurrency

Keeping past values to improve concurrency
Ordering transactions with timestamps

Txn A begin body commit
Xn f & } } y
ts=10 r(Rk,v) r(k,v)
By By O15
Versionsof k | [v] >t v,v+1] ——

ts=15 r(R,v) w(R,v+1)

Txn B ®
begin body commit
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Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

+ Logical view of the system: the current value for each key

begin body commit
Txn A [ o : 1
ts=10 r(R,v) r(R,v)
Logical viewof k vV b V41 >
ts=15 r(R,v) w(Rk,v+1)
Txn B *— 1

begin body commit
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Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point
Versioning and timestamps are not mentioned in the specification
= proof ensures correct handling of implementation details

Ry = vq Ry = v,
Logical state Ik, — v, Ry > V)

v

reading/writing Rq, ky, ...

Txn ‘ o—i ‘
begin body commit
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Application-friendly specification reduces proof effort

Top-level theorem of vMVCC

| sequential spec for 3
| transaction body !
! i 1. Application developer proves the transaction body in
| an isolated world

| 2. VMVCC's top-level theorem ensures safety to run the
”””””””””” transaction concurrently

I
I
I
I
1 concurrent spec for
I .
| transaction
I
I
I
I
I
I

10



Verification challenge: Transactions linearize before their body runs

Update the logical state requires knowing transaction execution in the future

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit

1



Addressing the challenge with prophecy variables [LICS '88]
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Addressing the challenge with prophecy variables [LICS '88]

1. Speculate whether a transaction commits/aborts and its updates
2. Update the logical state accordingly
3. Reconcile speculation with reality on commit/abort

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

‘ beg'in ‘ body ‘ commit

12



Addressing the challenge with prophecy variables [LICS '88]

/ txn B commits and updates kto v + 1
X txn B commits and updates kto v + 2

speculating all possible executions
X txn B aborts

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit
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Addressing the challenge with prophecy variables [LICS '88]

/ txn B commits and updates kto v + 1

speculating all possible executions

speculation aligns with reality
Logicalviewof kR —— v — vV S N

ts=15 r(k,v) w(k,v+1)

Txn B ® -
begin body commit
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Addressing the challenge with prophecy variables [LICS '88]
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Addressing the challenge with prophecy variables [LICS '88]

X txn B commits and updates kto v + 2
speculating all possible executions

txn B actually commits

and updates R to v+ 1

= contradiction!
Logical viewof R  — v — V2 S >

ts=15 r(k,v) w(k,v+1)

Txn B ® -
begin body commit

12



vMVCC: Implementation and proof efforts

Implementation feature and optimization

+ Concurrent GC of unusable versions Component Lines of code

- Sharding and padding shared data structures Program 827 (Go)

+ Timestamp generation with RDTSC
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vMVCC: Implementation and proof efforts

Implementation feature and optimization

- Concurrent GC of unusable versions
- Sharding and padding shared data structures
+ Timestamp generation with RDTSC

Proof framework

« Translating Go code with Goose [CoqPL '20]
« Proof in Perennial [SOSP "19], Iris [JFP 18], Coq

Component Lines of code

Program 827 (Go)

Spec (4 ops) 42 (Coq)

Proof ~11K (Coq)
VMVCC: 13x Prior work: 11-20x

GoTxn, CSPEC, CertiKOS, etc.

13



What good is the proof?

Clarify design by writing spec for whole system and internal components

14



What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

14



What good is the proof?

Clarify design by writing spec for whole system and internal components
Encourage writing cleaner code to reduce proof efforts
Caught subtle bugs

+ Premature GC of still valid versions
« Violation of strict monotonicity of timestamps
- Off-by-one errors
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Evaluation: Is the performance of vMVCC competitive to unverified systems?

Database benchmarks

- YCSB: reading or writing (given a certain R/W ratio) a key sampled uniformly
« TPC-C: modelling the operations of a warehouse wholesale supplier

Experimental setup
« AWS EC2 instance with 36 vCPUs and 72 GB of main memory

Silo [SOSP '13]: a state-of-the-art research system

- Single-node in-memory transactional key-value store

15



VMVCC is competitive with Silo, the state-of-the-art unverified system

25%-96% of Silo’s throughput for YCSB and TPC-C workloads

[ Silo E23 vMVCC
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VMVCC is competitive with Silo, the state-of-the-art unverified system

VMVCC lacks a tree-based index

[ Silo E23 vMVCC
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VvMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee
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VvMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee
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Reasoning about transactions
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Reasoning about transactions

« Push/pull model [PLDI "15]
-+ C4 [OOPSLA '22]

Prophecy variables

« RDCSS, Herlihy-Wing Queue [POPL "20]
- Atomic snapshot [TOPLAS '22]

Verified transaction library

« GoTxn [OSDI "22]
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Conclusion

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

« Sophisticated implementation to achieve high performance
- Succinct and application-friendly specification

- Formal proof adopting prophecy variables for MVCC transactions

https://pdos.csail.mit.edu/projects/vmvcc.html
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