Verifying vMVCC, a high-performance transaction library
using multi-version concurrency control

Yun-Sheng Chang “¢Ralf Jung Upamanyu Sharma
fJoseph Tassarotti Frans Kaashoek Nickolai Zeldovich

MIT CSAIL ?ETH Zurich NYU

Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques

- Multi-version concurrency control (MVCC), contention-free data structures, etc.

Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques
- Multi-version concurrency control (MVCC), contention-free data structures, etc.
Hard to implement a correct and high-performance transaction layer

- Zheng et al. [OSDI "14], Elle [VLDB "20], TxCheck [OSDI "23], etc.

Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques
- Multi-version concurrency control (MVCC), contention-free data structures, etc.
Hard to implement a correct and high-performance transaction layer
- Zheng et al. [OSDI "14], Elle [VLDB "20], TxCheck [OSDI "23], etc.
Transaction bugs can lead to severe consequences

- Corrupted databases, data losses, security issues, etc.

Approach: Formal verification

Specification

Proof Proof Checker OK

Implementation

Approach: Formal verification

Specification

Proof Proof Checker OK

MVCC-based
transaction library

\ J

1. improving concurrency with multiple versions

2. ordering transactions with timestamps

Approach: Formal verification

Strict
serializability

Proof Proof Checker OK

MVCC-based
transaction library

\ J

1. improving concurrency with multiple versions

2. ordering transactions with timestamps

Benefit of formal verification

Proof establishing strictly serializable execution of transactions

Benefit of formal verification

Proof establishing strictly serializable execution of transactions
= a wide range of bugs are eliminated

- Race conditions

« Qut-of-bound accesses

« Off-by-one errors

« Incorrect garbage collection (GC) of versions
- Violation of timestamp monotonicity

Challenges

1. Requiring a specification for strictly serializable transactions

Challenges

1. Requiring a specification for strictly serializable transactions

2. Proving MVCC transactions execute in some total order despite reordering

Challenges

1. Requiring a specification for strictly serializable transactions
2. Proving MVCC transactions execute in some total order despite reordering

3. Reasoning about garbage collection (GC) and RDTSC-based timestamps

Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

- High-performance Go implementation including GC and RDTSC-based timestamps

Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

- High-performance Go implementation including GC and RDTSC-based timestamps
« Succinct and application-friendly specification

Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

- High-performance Go implementation including GC and RDTSC-based timestamps
- Succinct and application-friendly specification
- Proof adopting prophecy variables [LICS '88] for MVCC transaction linearization

Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

begin body commit
Txn A f f J |
r(R,v) r(Rk,v)
Valueof kR } 6 v a): 6 v+1 >
read can proceed in parallel
r(R,v) w(R,v+1)
TXn B f } }
begin body commit

Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

begin body commit
Txn A f f J |
r(k,v) r(k,v)

Valueof kR } 6 a): 6 v+1 >
wait until lock on k is released by Txn A

r(R,v) w(Rk,v+1)

Txn B f t }
begin body commit

Benefit of MVCC: More concurrency

Keeping past values to improve concurrency

begin body commit
Txn A f f J |
r(k,v) r(k,v)
Valuesof R t v] > v,v+1] ——
no need to wait until Txn A commits
r(R,v) w(k,v+1)
Txn B ‘ 1 :

begin body commit

Benefit of MVCC: More concurrency

Keeping past values to improve concurrency
Ordering transactions with timestamps

Txn A begin body commit
Xn f & } } y
ts=10 r(Rk,v) r(k,v)
By By O15
Versionsof k | [v] >t v,v+1] ——

ts=15 r(R,v) w(R,v+1)

Txn B ®
begin body commit

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point

begin body commit

ts=10 r(R,V) r(k,v) |

Txn A 1

beg'in body commit

ts=15 r(Rk,v) w(k,v+1
Txn B 20 rkv) w)

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point

+ MVCC transactions linearize exactly when timestamp is generated

begin body commit

TXn A f A4 t } |
ts=10 r(k,v) r(R,v)

ts=15 r(k,v) w(k,v+1)

Txn B ®
begin body commit

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

begin body commit
TXnA +——e— * !
ts=10 r(kv) r(k,v)
Logical view of k| = ’
ts=15 \Fk,v w(R,v+1
B o (R,v) w()|

beézn body commit

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

+ Logical view of the system: the current value for each key

begin body commit

TXn A f A4 t } |
ts=10 r(k,v) r(R,v)

Logicalviewof k|

v

ts=15 r(k,v) w(k,v+1)

begin body commit

Txn B

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

+ Logical view of the system: the current value for each key

begin body commit

Txn A [o
ts=10 r(k,v) r(R,v)

v

Logical viewof kK +v—>

ts=15 r(k,v) w(k,v+1)

begin body commit

Txn B

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

+ Logical view of the system: the current value for each key

begin body commit
TXnA | o : i
ts=10 r(R,v) r(R,v)
Logical viewof kv 3 >
ts=15 r(R,v) w(R,v+1
Txn B *— () 1

begin body commit

Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
+ MVCC transactions linearize exactly when timestamp is generated

+ Logical view of the system: the current value for each key

begin body commit
Txn A [o : 1
ts=10 r(R,v) r(R,v)
Logical viewof k vV b V41 >
ts=15 r(R,v) w(Rk,v+1)
Txn B *— 1

begin body commit

Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point

Ri = vy Ry v
Logical state kv, ky = V4

v

reading/writing Ry, ky, ...

TXn ® -
begin body commit

Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point
Versioning and timestamps are not mentioned in the specification

Ry = vq Ry = v,
Logical state Ik, — v, Ry > V4

v

reading/writing Rq, ky, ...

Txn

beg'in body commit

Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point
Versioning and timestamps are not mentioned in the specification
= proof ensures correct handling of implementation details

Ry = vq Ry = v,
Logical state Ik, — v, Ry > V)

v

reading/writing Rq, ky, ...

Txn ‘ o—i ‘
begin body commit

Application-friendly specification reduces proof effort

Top-level theorem of vMVCC

sequential spec for
transaction body

concurrent spec for
transaction

10

Application-friendly specification reduces proof effort

Top-level theorem of vMVCC

| sequential spec for 3
| transaction body !
; | 1. Application developer proves the transaction body in
| 1 an isolated world

I
I
I
I
1 concurrent spec for
I .
| transaction
I
I
I
I
I
I

10

Application-friendly specification reduces proof effort

Top-level theorem of vMVCC

| sequential spec for 3
| transaction body !
! i 1. Application developer proves the transaction body in
| an isolated world

| 2. VMVCC's top-level theorem ensures safety to run the
”””””””””” transaction concurrently

I
I
I
I
1 concurrent spec for
I .
| transaction
I
I
I
I
I
I

10

Verification challenge: Transactions linearize before their body runs

Update the logical state requires knowing transaction execution in the future

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit

1

Addressing the challenge with prophecy variables [LICS '88]

1. Speculate whether a transaction commits/aborts and its updates

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit

12

Addressing the challenge with prophecy variables [LICS '88]

1. Speculate whether a transaction commits/aborts and its updates
2. Update the logical state accordingly

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit

12

Addressing the challenge with prophecy variables [LICS '88]

1. Speculate whether a transaction commits/aborts and its updates
2. Update the logical state accordingly
3. Reconcile speculation with reality on commit/abort

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

‘ beg'in ‘ body ‘ commit

12

Addressing the challenge with prophecy variables [LICS '88]

/ txn B commits and updates kto v + 1
X txn B commits and updates kto v + 2

speculating all possible executions
X txn B aborts

Logicalviewof kR v

ts=15 r(k,v) w(k,v+1)

Txn B

beg'in body commit

12

Addressing the challenge with prophecy variables [LICS '88]

/ txn B commits and updates kto v + 1

speculating all possible executions

speculation aligns with reality
Logicalviewof kR —— v — vV S N

ts=15 r(k,v) w(k,v+1)

Txn B ® -
begin body commit

12

Addressing the challenge with prophecy variables [LICS '88]

/ txn B commits and updates kto v + 1

speculating all possible executions

Logical viewof kR +— v — V41

v

ts=15 r(k,v) w(k,v+1)

Txn B ®
begin body commit

12

Addressing the challenge with prophecy variables [LICS '88]

X txn B commits and updates kto v + 2
speculating all possible executions

txn B actually commits

and updates R to v+ 1

= contradiction!
Logical viewof R — v — V2 S >

ts=15 r(k,v) w(k,v+1)

Txn B ® -
begin body commit

12

vMVCC: Implementation and proof efforts

Implementation feature and optimization

+ Concurrent GC of unusable versions Component Lines of code

- Sharding and padding shared data structures Program 827 (Go)

+ Timestamp generation with RDTSC

13

vMVCC: Implementation and proof efforts

Implementation feature and optimization

+ Concurrent GC of unusable versions Component Lines of code

- Sharding and padding shared data structures Program 827 (Go)

+ Timestamp generation with RDTSC

Proof framework

« Translating Go code with Goose [CoqPL '20]
« Proof in Perennial [SOSP "19], Iris [JFP 18], Coq

13

vMVCC: Implementation and proof efforts

Implementation feature and optimization

+ Concurrent GC of unusable versions Component Lines of code
- Sharding and padding shared data structures Program 827 (Go)
+ Timestamp generation with RDTSC Spec (4 ops) 42 (Coq)

Proof framework

« Translating Go code with Goose [CoqPL '20]
« Proof in Perennial [SOSP "19], Iris [JFP 18], Coq

13

vMVCC: Implementation and proof efforts

Implementation feature and optimization

- Concurrent GC of unusable versions
- Sharding and padding shared data structures
+ Timestamp generation with RDTSC

Proof framework

« Translating Go code with Goose [CoqPL '20]
« Proof in Perennial [SOSP "19], Iris [JFP 18], Coq

Component Lines of code

Program 827 (Go)

Spec (4 ops) 42 (Coq)

Proof ~11K (Coq)
VMVCC: 13x Prior work: 11-20x

GoTxn, CSPEC, CertiKOS, etc.

13

What good is the proof?

Clarify design by writing spec for whole system and internal components

14

What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

14

What good is the proof?

Clarify design by writing spec for whole system and internal components
Encourage writing cleaner code to reduce proof efforts
Caught subtle bugs

+ Premature GC of still valid versions
« Violation of strict monotonicity of timestamps
- Off-by-one errors

14

Evaluation: Is the performance of vMVCC competitive to unverified systems?

Database benchmarks

- YCSB: reading or writing (given a certain R/W ratio) a key sampled uniformly
« TPC-C: modelling the operations of a warehouse wholesale supplier

Experimental setup
« AWS EC2 instance with 36 vCPUs and 72 GB of main memory

Silo [SOSP '13]: a state-of-the-art research system

- Single-node in-memory transactional key-value store

15

VMVCC is competitive with Silo, the state-of-the-art unverified system

25%-96% of Silo’s throughput for YCSB and TPC-C workloads

[Silo E23 vMVCC

S10] e = = m =
s] £ @ -
£08 | [g = H E H P
€ 06 s 5 s z ¥ 2
= S o - o v
(] N 3 o0 "
04 ° o
2 o
E 0.2
&

00vcsg YCSB YCSB Scan TPC-C _ TPCC

(100R/0W) (50R/50W) (OR/100W) (100 keys) (1 WH) (32 WH)
16

VMVCC is competitive with Silo, the state-of-the-art unverified system

VMVCC lacks a tree-based index

[Silo E23 vMVCC

o o =
o » o
|

Relative Performance

I
o

o o
N s
1.7 M txn/s
I

w
o
o
=)

(100 keys)
16

VvMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee

810 _
g

P 2
EO.S g
S

< 0.6 =
8 2
g 0.4

2

Fo2

(]

& 0.0

YCSB
(OR/100W)
16

VvMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee

[Silo 0 vMVCC EEEE + in-place update (incorrect)

—_
=]

I
>

I
=N

N
FS

e
[N}

Relative Performance

I
o

" YCSB
(OR/100W)

16

Reasoning about transactions

« Push/pull model [PLDI "15]
-+ C4 [OOPSLA '22]

17

Reasoning about transactions

« Push/pull model [PLDI "15]
-+ C4 [OOPSLA '22]

Prophecy variables

« RDCSS, Herlihy-Wing Queue [POPL "20]
- Atomic snapshot [TOPLAS '22]

17

Reasoning about transactions

« Push/pull model [PLDI "15]
-+ C4 [OOPSLA '22]

Prophecy variables

« RDCSS, Herlihy-Wing Queue [POPL "20]
- Atomic snapshot [TOPLAS '22]

Verified transaction library

« GoTxn [OSDI "22]

17

Conclusion

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

« Sophisticated implementation to achieve high performance
- Succinct and application-friendly specification

- Formal proof adopting prophecy variables for MVCC transactions

https://pdos.csail.mit.edu/projects/vmvcc.html

18

https://pdos.csail.mit.edu/projects/vmvcc.html

