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Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques

• Multi-version concurrency control (MVCC), contention-free data structures, etc.

Hard to implement a correct and high-performance transaction layer

• Zheng et al. [OSDI ’14], Elle [VLDB ’20], TxCheck [OSDI ’23], etc.

Transaction bugs can lead to severe consequences

• Corrupted databases, data losses, security issues, etc.
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Approach: Formal verification

Proof Checker OK

Specification

Proof

Implementation

1. improving concurrency with multiple versions
2. ordering transactions with timestamps
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Benefit of formal verification

Proof establishing strictly serializable execution of transactions

=⇒ a wide range of bugs are eliminated

• Race conditions
• Out-of-bound accesses
• Off-by-one errors
• Incorrect garbage collection (GC) of versions
• Violation of timestamp monotonicity
• ...
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Challenges

1. Requiring a specification for strictly serializable transactions

2. Proving MVCC transactions execute in some total order despite reordering
3. Reasoning about garbage collection (GC) and RDTSC-based timestamps
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Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• High-performance Go implementation including GC and RDTSC-based timestamps
• Succinct and application-friendly specification
• Proof adopting prophecy variables [LICS ’88] for MVCC transaction linearization
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Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

Time

begin body commit
Txn A

r(k, v) r(k, v)

requirement: two reads give the same result

begin body commit
Txn B

r(k, v) w(k, v+ 1)
read can proceed in parallel

wait until lock on k is released by Txn A

Value of k

v

v v+ 1

Versions of k
Logical view of k
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Benefit of MVCC: More concurrency

Keeping past values to improve concurrency

Ordering transactions with timestamps

Time

begin body commit
Txn A

r(k, v) r(k, v)

ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)
no need to wait until Txn A commits

ts = 15

Values of k [v] [v, v+ 1]

Versions of k [v] [v, v+ 1]
4 4 15

Logical view of k
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Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point

• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
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r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k vvv v+ 1
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Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point

Versioning and timestamps are not mentioned in the specification
=⇒ proof ensures correct handling of implementation details

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn

r(k, v) w(k, v+ 1)

reading/writing k1, k2, ...

Logical state
k1 7→ v1
k2 7→ v2

...

k1 7→ v′1
k2 7→ v′2

...

Versions of k
Logical view of k
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Application-friendly specification reduces proof effort

∗
(k,v)∈m

k t7→ v ∗ P(m)


body(txn) ∗
(k,v)∈m′

k t7→ v ∗ Q(m,m′)


⟨
m. ∗

(k,v)∈m

k 7→ v ∗ P(m)

⟩
db.Run(body)⟨ ∗
(k,v)∈m′

k 7→ v ∗ Q(m,m′)

⟩

sequential spec for
transaction body

concurrent spec for
transaction

=⇒

Top-level theorem of vMVCC

1. Application developer proves the transaction body in
an isolated world

2. vMVCC’s top-level theorem ensures safety to run the
transaction concurrently
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Verification challenge: Transactions linearize before their body runs

Update the logical state requires knowing transaction execution in the future

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k v
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Addressing the challenge with prophecy variables [LICS ’88]

1. Speculate whether a transaction commits/aborts and its updates

2. Update the logical state accordingly
3. Reconcile speculation with reality on commit/abort

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!
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R8
4 A3 Ck7→v+1

15
...

A3 Ck7→v+2
15

...

A5 R8
4 A15 ...

...

txn B commits and updates k to v+ 1

txn B commits and updates k to v+ 2

txn B aborts

3

7

7

a list of future reads, aborts, and commits
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vMVCC: Implementation and proof efforts

Implementation feature and optimization
• Concurrent GC of unusable versions
• Sharding and padding shared data structures
• Timestamp generation with RDTSC

Proof framework
• Translating Go code with Goose [CoqPL ’20]
• Proof in Perennial [SOSP ’19], Iris [JFP ’18], Coq

Component Lines of code

Program 827 (Go)

Spec (4 ops) 42 (Coq)
Proof ∼11K (Coq)

vMVCC: 13× Prior work: 11–20×
GoTxn, CSPEC, CertiKOS, etc.
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What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

Caught subtle bugs

• Premature GC of still valid versions
• Violation of strict monotonicity of timestamps
• Off-by-one errors
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Evaluation: Is the performance of vMVCC competitive to unverified systems?

Database benchmarks
• YCSB: reading or writing (given a certain R/W ratio) a key sampled uniformly
• TPC-C: modelling the operations of a warehouse wholesale supplier

Experimental setup
• AWS EC2 instance with 36 vCPUs and 72 GB of main memory

Silo [SOSP ’13]: a state-of-the-art research system
• Single-node in-memory transactional key-value store

15



vMVCC is competitive with Silo, the state-of-the-art unverified system

25%–96% of Silo’s throughput for YCSB and TPC-C workloads
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vMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index

Silo has lower versioning overhead but weaker consistency guarantee
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Conclusion

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• Sophisticated implementation to achieve high performance
• Succinct and application-friendly specification
• Formal proof adopting prophecy variables for MVCC transactions

https://pdos.csail.mit.edu/projects/vmvcc.html
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