
Verifying vMVCC, a high-performance transaction library
using multi-version concurrency control

Yun-Sheng Chang ϕRalf Jung Upamanyu Sharma
†Joseph Tassarotti Frans Kaashoek Nickolai Zeldovich

MIT CSAIL ϕETH Zurich †NYU



Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques

• Multi-version concurrency control (MVCC), contention-free data structures, etc.

Hard to implement a correct and high-performance transaction layer

• Zheng et al. [OSDI ’14], Elle [VLDB ’20], TxCheck [OSDI ’23], etc.

Transaction bugs can lead to severe consequences

• Corrupted databases, data losses, security issues, etc.

1



Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques

• Multi-version concurrency control (MVCC), contention-free data structures, etc.

Hard to implement a correct and high-performance transaction layer

• Zheng et al. [OSDI ’14], Elle [VLDB ’20], TxCheck [OSDI ’23], etc.

Transaction bugs can lead to severe consequences

• Corrupted databases, data losses, security issues, etc.

1



Transactions simplify application development, but...

Achieving high performance requires sophisticated concurrency techniques

• Multi-version concurrency control (MVCC), contention-free data structures, etc.

Hard to implement a correct and high-performance transaction layer

• Zheng et al. [OSDI ’14], Elle [VLDB ’20], TxCheck [OSDI ’23], etc.

Transaction bugs can lead to severe consequences

• Corrupted databases, data losses, security issues, etc.

1



Approach: Formal verification

Proof Checker OK

Specification

Proof

Implementation

1. improving concurrency with multiple versions
2. ordering transactions with timestamps

2



Approach: Formal verification

Proof Checker OK

Specification

Proof

MVCC-based
transaction library

1. improving concurrency with multiple versions
2. ordering transactions with timestamps

2



Approach: Formal verification

Proof Checker OK

Strict
serializability

Proof

MVCC-based
transaction library

1. improving concurrency with multiple versions
2. ordering transactions with timestamps

2



Benefit of formal verification

Proof establishing strictly serializable execution of transactions

=⇒ a wide range of bugs are eliminated

• Race conditions
• Out-of-bound accesses
• Off-by-one errors
• Incorrect garbage collection (GC) of versions
• Violation of timestamp monotonicity
• ...

3



Benefit of formal verification

Proof establishing strictly serializable execution of transactions

=⇒ a wide range of bugs are eliminated

• Race conditions
• Out-of-bound accesses
• Off-by-one errors
• Incorrect garbage collection (GC) of versions
• Violation of timestamp monotonicity
• ...

3



Challenges

1. Requiring a specification for strictly serializable transactions

2. Proving MVCC transactions execute in some total order despite reordering
3. Reasoning about garbage collection (GC) and RDTSC-based timestamps

4



Challenges

1. Requiring a specification for strictly serializable transactions
2. Proving MVCC transactions execute in some total order despite reordering

3. Reasoning about garbage collection (GC) and RDTSC-based timestamps

4



Challenges

1. Requiring a specification for strictly serializable transactions
2. Proving MVCC transactions execute in some total order despite reordering
3. Reasoning about garbage collection (GC) and RDTSC-based timestamps

4



Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• High-performance Go implementation including GC and RDTSC-based timestamps
• Succinct and application-friendly specification
• Proof adopting prophecy variables [LICS ’88] for MVCC transaction linearization

5



Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• High-performance Go implementation including GC and RDTSC-based timestamps

• Succinct and application-friendly specification
• Proof adopting prophecy variables [LICS ’88] for MVCC transaction linearization

5



Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• High-performance Go implementation including GC and RDTSC-based timestamps
• Succinct and application-friendly specification

• Proof adopting prophecy variables [LICS ’88] for MVCC transaction linearization

5



Contributions of this work

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• High-performance Go implementation including GC and RDTSC-based timestamps
• Succinct and application-friendly specification
• Proof adopting prophecy variables [LICS ’88] for MVCC transaction linearization

5



Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

Time

begin body commit
Txn A

r(k, v) r(k, v)

requirement: two reads give the same result

begin body commit
Txn B

r(k, v) w(k, v+ 1)
read can proceed in parallel

wait until lock on k is released by Txn A

Value of k

v

v v+ 1

Versions of k
Logical view of k

6



Transactions using two-phase locking (2PL)

Acquiring a lock before reading/writing a key

Time

begin body commit
Txn A

r(k, v) r(k, v)

requirement: two reads give the same result

begin body commit
Txn B

r(k, v) w(k, v+ 1)

read can proceed in parallel

wait until lock on k is released by Txn A
Value of k

v

v v+ 1

Versions of k
Logical view of k

6



Benefit of MVCC: More concurrency

Keeping past values to improve concurrency

Ordering transactions with timestamps

Time

begin body commit
Txn A

r(k, v) r(k, v)

ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)
no need to wait until Txn A commits

ts = 15

Values of k [v] [v, v+ 1]

Versions of k [v] [v, v+ 1]
4 4 15

Logical view of k

7



Benefit of MVCC: More concurrency

Keeping past values to improve concurrency
Ordering transactions with timestamps

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)

no need to wait until Txn A commits

ts = 15

Values of k [v] [v, v+ 1]

Versions of k [v] [v, v+ 1]
4 4 15

Logical view of k

7



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point

• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k vvv v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated

• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k vvv v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated

• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k

vvv v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k

vvv v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k v

vv v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k

v

v

v v+ 1

8



Specifying strictly serializable transactions

Each transaction appears to execute its reads and writes at its linearization point
• MVCC transactions linearize exactly when timestamp is generated
• Logical view of the system: the current value for each key

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k

vv

v v+ 1

8



Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point

Versioning and timestamps are not mentioned in the specification
=⇒ proof ensures correct handling of implementation details

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn

r(k, v) w(k, v+ 1)

reading/writing k1, k2, ...

Logical state
k1 7→ v1
k2 7→ v2

...

k1 7→ v′1
k2 7→ v′2

...

Versions of k
Logical view of k

9



Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point
Versioning and timestamps are not mentioned in the specification

=⇒ proof ensures correct handling of implementation details

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn

r(k, v) w(k, v+ 1)

reading/writing k1, k2, ...

Logical state
k1 7→ v1
k2 7→ v2

...

k1 7→ v′1
k2 7→ v′2

...

Versions of k
Logical view of k

9



Succinct specification catches a wide range of implementation bugs

Reading and writing the logical state around the linearization point
Versioning and timestamps are not mentioned in the specification
=⇒ proof ensures correct handling of implementation details

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn

r(k, v) w(k, v+ 1)

reading/writing k1, k2, ...

Logical state
k1 7→ v1
k2 7→ v2

...

k1 7→ v′1
k2 7→ v′2

...

Versions of k
Logical view of k

9



Application-friendly specification reduces proof effort

∗
(k,v)∈m

k t7→ v ∗ P(m)


body(txn) ∗
(k,v)∈m′

k t7→ v ∗ Q(m,m′)


⟨
m. ∗

(k,v)∈m

k 7→ v ∗ P(m)

⟩
db.Run(body)⟨ ∗
(k,v)∈m′

k 7→ v ∗ Q(m,m′)

⟩

sequential spec for
transaction body

concurrent spec for
transaction

=⇒

Top-level theorem of vMVCC

1. Application developer proves the transaction body in
an isolated world

2. vMVCC’s top-level theorem ensures safety to run the
transaction concurrently

10



Application-friendly specification reduces proof effort

∗
(k,v)∈m

k t7→ v ∗ P(m)


body(txn) ∗
(k,v)∈m′

k t7→ v ∗ Q(m,m′)


⟨
m. ∗

(k,v)∈m

k 7→ v ∗ P(m)

⟩
db.Run(body)⟨ ∗
(k,v)∈m′

k 7→ v ∗ Q(m,m′)

⟩

sequential spec for
transaction body

concurrent spec for
transaction

=⇒

Top-level theorem of vMVCC

1. Application developer proves the transaction body in
an isolated world

2. vMVCC’s top-level theorem ensures safety to run the
transaction concurrently

10



Application-friendly specification reduces proof effort

∗
(k,v)∈m

k t7→ v ∗ P(m)


body(txn) ∗
(k,v)∈m′

k t7→ v ∗ Q(m,m′)


⟨
m. ∗

(k,v)∈m

k 7→ v ∗ P(m)

⟩
db.Run(body)⟨ ∗
(k,v)∈m′

k 7→ v ∗ Q(m,m′)

⟩

sequential spec for
transaction body

concurrent spec for
transaction

=⇒

Top-level theorem of vMVCC

1. Application developer proves the transaction body in
an isolated world

2. vMVCC’s top-level theorem ensures safety to run the
transaction concurrently

10



Verification challenge: Transactions linearize before their body runs

Update the logical state requires knowing transaction execution in the future

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Logical view of k v

11



Addressing the challenge with prophecy variables [LICS ’88]

1. Speculate whether a transaction commits/aborts and its updates

2. Update the logical state accordingly
3. Reconcile speculation with reality on commit/abort

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

1. Speculate whether a transaction commits/aborts and its updates
2. Update the logical state accordingly

3. Reconcile speculation with reality on commit/abort

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

1. Speculate whether a transaction commits/aborts and its updates
2. Update the logical state accordingly
3. Reconcile speculation with reality on commit/abort

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

R8
4 A3 Ck7→v+1

15
...

A3 Ck7→v+2
15

...

A5 R8
4 A15 ...

...

txn B commits and updates k to v+ 1

txn B commits and updates k to v+ 2

txn B aborts

3

7

7

a list of future reads, aborts, and commits

speculating all possible executions

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

R8
4 A3 Ck7→v+1

15
...

A3 Ck7→v+2
15

...

A5 R8
4 A15 ...

...

txn B commits and updates k to v+ 1

txn B commits and updates k to v+ 2

txn B aborts

3

7

7

a list of future reads, aborts, and commits

speculating all possible executions

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v v+ 1

v+ 1v+ 2

speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

R8
4 A3 Ck7→v+1

15
...

A3 Ck7→v+2
15

...

A5 R8
4 A15 ...

...

txn B commits and updates k to v+ 1

txn B commits and updates k to v+ 2

txn B aborts

3

7

7

a list of future reads, aborts, and commits

speculating all possible executions

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1

v+ 1

v+ 2
speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



Addressing the challenge with prophecy variables [LICS ’88]

R8
4 A3 Ck7→v+1

15
...

A3 Ck7→v+2
15

...

A5 R8
4 A15 ...

...

txn B commits and updates k to v+ 1

txn B commits and updates k to v+ 2

txn B aborts

3

7

7

a list of future reads, aborts, and commits

speculating all possible executions

Time

begin body commit
Txn A

r(k, v) r(k, v)ts = 10

begin body commit
Txn B

r(k, v) w(k, v+ 1)ts = 15

Versions of k

Logical view of k v

v+ 1 v+ 1

v+ 2

speculation aligns with reality

txn B actually commits
and updates k to v+ 1
=⇒ contradiction!

12



vMVCC: Implementation and proof efforts

Implementation feature and optimization
• Concurrent GC of unusable versions
• Sharding and padding shared data structures
• Timestamp generation with RDTSC

Proof framework
• Translating Go code with Goose [CoqPL ’20]
• Proof in Perennial [SOSP ’19], Iris [JFP ’18], Coq

Component Lines of code

Program 827 (Go)

Spec (4 ops) 42 (Coq)
Proof ∼11K (Coq)

vMVCC: 13× Prior work: 11–20×
GoTxn, CSPEC, CertiKOS, etc.

13



vMVCC: Implementation and proof efforts

Implementation feature and optimization
• Concurrent GC of unusable versions
• Sharding and padding shared data structures
• Timestamp generation with RDTSC

Proof framework
• Translating Go code with Goose [CoqPL ’20]
• Proof in Perennial [SOSP ’19], Iris [JFP ’18], Coq

Component Lines of code

Program 827 (Go)

Spec (4 ops) 42 (Coq)
Proof ∼11K (Coq)

vMVCC: 13× Prior work: 11–20×
GoTxn, CSPEC, CertiKOS, etc.

13



vMVCC: Implementation and proof efforts

Implementation feature and optimization
• Concurrent GC of unusable versions
• Sharding and padding shared data structures
• Timestamp generation with RDTSC

Proof framework
• Translating Go code with Goose [CoqPL ’20]
• Proof in Perennial [SOSP ’19], Iris [JFP ’18], Coq

Component Lines of code

Program 827 (Go)
Spec (4 ops) 42 (Coq)

Proof ∼11K (Coq)

vMVCC: 13× Prior work: 11–20×
GoTxn, CSPEC, CertiKOS, etc.

13



vMVCC: Implementation and proof efforts

Implementation feature and optimization
• Concurrent GC of unusable versions
• Sharding and padding shared data structures
• Timestamp generation with RDTSC

Proof framework
• Translating Go code with Goose [CoqPL ’20]
• Proof in Perennial [SOSP ’19], Iris [JFP ’18], Coq

Component Lines of code

Program 827 (Go)
Spec (4 ops) 42 (Coq)
Proof ∼11K (Coq)

vMVCC: 13× Prior work: 11–20×
GoTxn, CSPEC, CertiKOS, etc.

13



What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

Caught subtle bugs

• Premature GC of still valid versions
• Violation of strict monotonicity of timestamps
• Off-by-one errors

14



What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

Caught subtle bugs

• Premature GC of still valid versions
• Violation of strict monotonicity of timestamps
• Off-by-one errors

14



What good is the proof?

Clarify design by writing spec for whole system and internal components

Encourage writing cleaner code to reduce proof efforts

Caught subtle bugs

• Premature GC of still valid versions
• Violation of strict monotonicity of timestamps
• Off-by-one errors

14



Evaluation: Is the performance of vMVCC competitive to unverified systems?

Database benchmarks
• YCSB: reading or writing (given a certain R/W ratio) a key sampled uniformly
• TPC-C: modelling the operations of a warehouse wholesale supplier

Experimental setup
• AWS EC2 instance with 36 vCPUs and 72 GB of main memory

Silo [SOSP ’13]: a state-of-the-art research system
• Single-node in-memory transactional key-value store

15



vMVCC is competitive with Silo, the state-of-the-art unverified system

25%–96% of Silo’s throughput for YCSB and TPC-C workloads

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.6

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC

16



vMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index

Silo has lower versioning overhead but weaker consistency guarantee

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.6

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC

16



vMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.6

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC + in-place update (incorrect)

16



vMVCC is competitive with Silo, the state-of-the-art unverified system

vMVCC lacks a tree-based index
Silo has lower versioning overhead but weaker consistency guarantee

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.6

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC

YCSB
(100R/0W)

YCSB
(50R/50W)

YCSB
(0R/100W)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce

52
.0

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

1.
7 

M
 t

xn
/s

33
.0

 K
 t

xn
/s

34
3.

5 
K

 t
xn

/s

Silo vMVCC + in-place update (incorrect)

16



Related work

Reasoning about transactions

• Push/pull model [PLDI ’15]
• C4 [OOPSLA ’22]

Prophecy variables

• RDCSS, Herlihy-Wing Queue [POPL ’20]
• Atomic snapshot [TOPLAS ’22]

Verified transaction library

• GoTxn [OSDI ’22]

17



Related work

Reasoning about transactions

• Push/pull model [PLDI ’15]
• C4 [OOPSLA ’22]

Prophecy variables

• RDCSS, Herlihy-Wing Queue [POPL ’20]
• Atomic snapshot [TOPLAS ’22]

Verified transaction library

• GoTxn [OSDI ’22]

17



Related work

Reasoning about transactions

• Push/pull model [PLDI ’15]
• C4 [OOPSLA ’22]

Prophecy variables

• RDCSS, Herlihy-Wing Queue [POPL ’20]
• Atomic snapshot [TOPLAS ’22]

Verified transaction library

• GoTxn [OSDI ’22]

17



Conclusion

vMVCC is the first MVCC-based transaction library with a machine-checked proof
of correctness

• Sophisticated implementation to achieve high performance
• Succinct and application-friendly specification
• Formal proof adopting prophecy variables for MVCC transactions

https://pdos.csail.mit.edu/projects/vmvcc.html

18

https://pdos.csail.mit.edu/projects/vmvcc.html

