VST: A Virtual Stress Testing Framework for
Discovering Bugs in SSD Flash-Translation Layers

Ren-Shuo Liu, Yun-Sheng Chang, Chih-Wen Hung

System and Storage Design Lab
Department of Electrical Engineering

% ~jys National Tsing Hua University, Taiwan i
) T : :)%:’n “@&/i\‘l\\\\\s -

NTHU

Our Contributions — Virtual Stress Test (VST)

e Stress test SSD firmware without using real SSDs

* Enhance SSD firmware design flow
* Fast stress tests surpassing SSDs' speed limitations
 Scalable stress tests without a need of a large number of SSDs
e Ease reproducing and investigating failed tests

* We apply VST to a real SSD project, OpenSSD, and VST helps
us to discover seven new firmware bugs

* A solid evidence of VST's bug-discovering effectiveness

Outline

* Background

* Challenges and our contributions
* VVirtual Stress Test design

* Evaluation

* Conclusions

NAND Flash-Based SSDs (Solid State Drives)

* SSD is an important storage technology now
* Mobile, laptop, desktop, and server computers

* SSDs' advantages over hard disk drives
* Superior access speed * Lower power consumption

* Smaller form factors Complete shock resistance

NAND Flash-Based SSDs (Solid State Drives)

NAND flash

Controller
DRAM

Organization of an SSD

Controller

e Controller (1~8 buses)
* Bus (2 —8 flash chips)
* Chip (~4096 flash blocks)
* Block (128 —512 flash pages)
* Page (4—32KB)

Flash Operations and Rules

* Basic flash operations
e Reading a page
* Writing a page
* Erasing a block (e.g., 256
pages)

* Basic rules
 Directly overwriting a page
is prohibited
* Writing non-sequential
pages (in a flash block) is
prohibited

Controller

Flash Translation Layer (FTL)

* The firmware in every SSD

e Basic FTL functions Read Write

* Translate host requests to flash read,
write, and erase operations

FTL (Firmware
———- ._______. _______________ 7]

* Many advanced FTL mechanisms are
proposed to improve FTL
* Wear leveling
* Hot-cold data separation) -
* Dynamic write allocation ; Flash

Outline

* Introduction and background

* Challenges and our contributions
* VVirtual Stress Test design

* Evaluation

* Conclusions

Challenges

* The pursuit of advanced FTL
mechanismsincrease FTL
complexity

* More complex firmware are more
prone to have bugs

* FTL bugs can lead to unacceptable
and unrecoverable errors such as

data and capacity losses

10

Challenges

* Real SSD-based stress test is the
common practice to discover FTL bugs

e Generates intensive read and write
requests to an SSD

* FTL is probably buggy if abnormal
behaviors present, such as
* Request timeout
* SSD disconnection
e Data comparison mismatch

Real SSD-Based Test

Stress
testing
software

Computer

~100 MHz
embedded
CPU

Real SSD hardware
(flash, DRAM, etc.)

11

Challenges

e Real SSD-based stress test is and will
still be necessary

* However, it has drawbacks

e Speed is limited by SSD hardware (e.g.,
flash memory)

 Scalability is limited by the number of
SSDs prepared

* Reproducing a failed test can be difficult

* Investigating a failed test needs expensive
equipment (e.g,. a JTAG debugger)

Real SSD-Based Test

Stress
testing
software

Computer

~100 MHz
embedded
CPU

(e
%
.

Real SSD hardware =

-
(flash, DRAM, etc$*
J

‘ E% ¢

12

Our Solution —Virtual Stress Test (VST)

4 Virtual Stress Testing (VST) Framework
x86 executables Multiple FTL instances
running at the simultaneously under test
native x86 speed
Y = ‘ Virtual SSD
Wi W wE hardware (flash,
.......... DRAM, etc.)
g {ﬁ} g High aggregate
testing speed
VST
GHz, multi-core CPU
GHz, GB DRAM
Computer

Real SSD-Based Test

Stress
testing
software

Computer

~100 MHz
embedded

{]} Limited

\[testing speed

CPU g// /

Real SSD hardware
(flash, DRAM, etc.)

13

VST vs. Traditional Stress Tests

_ VST Traditional Stress Tests

Speed Native PC and server speed Limited by SSD hardware

Multi-sever and

: . Limited by the num. of SSDs
multi-core parallelism

Scalability

Reproducing a
failed stress test

Critical bugs can

100% guarantee
only appear once!

Complicated and
expensive equipment

Investigating a

failed stress test Software debugging tools

Outline

* Background

* Challenges and our contributions
* VVirtual Stress Test design

* Evaluation

* Conclusions

15

Naive Flash Memory Emulation

page is
erased?

A page of
e.g., 8KB
data

Data structure

emulate 1 GB flash
using 1 GB DRAM

VST's Flash Memory Emulation

Data structure

page is =
erased? — L= Data necessary
/4’/_ . to the FTL
. /
Ta mimilm
g \— :_’l i /‘
Pointer

emulate 1 GB flash
using e.g., 0.01 GB DRAM

17

Write Page n (tart)

N
Y

<<

@on-sequentialwriteD
L >< Direct overwrite !)

Mark page n as not erased

Y
Host dataA FTL metadata

A4

Record the logical
address (LBA) only

hvd

\4

Allocate memory space
to keep the content

|
CEnd)

Read Page n (_strt)

Y » Return all Oxff

FTL metadata

|

Return the data

!

Host data (Warni ng)

equested LBA=
corded LB

CEnd)

Erase Block n (start)

|

Mark all pages as erased

l

Free allocated memory space (if any)

l

Reset recorded LBAs

CEnd)

Outline

* Introduction and background
* Challenges and our contributions
* VVirtual Stress Test design

 Evaluation
 Discovered bugs
* Testing speed

 Conclusions

21

Experimental Setup

* Three OpenSSD FTLs
* Greedy, DAC, FASTer

* 16 write-intensive disk traces
e Each contains 1TB write amount

* Desktop computer
* Intel i7 3.6GHz 4-core CPU
* 32GB DRAM

Write Read

Name | yRequests | Tot.Size | #Requests | Tot. Size
(M) (TB) (M) (TB)
hm_0 78 1 43 0.5
mds_0 87 1 12 0.3
prn_0 67 1 8 0.2
proj_0 23 1 3 0.1
prxy_0 91 1 3 0.0
prxy_1 60 1 113 1.8
rsrch_0 80 1 8 0.1
srcl_0 18 1 28 1.1
srcl_2 28 1 9 0.2
src2_0 90 1 11 0.1
src2_2 18 1 8 0.6
stg 0 77 1 14 0.4
ts_0 85 1 18 0.3
usr 0 69 1 47 2.0
wdev_0 84 1 21 0.3
web 0 79 1 34 1.1

LL

Bug Detection Results

* Seven new bugs are discovered
* Four in DAC FTL

* Two in Greedy FTL
* One in the FASTer FTL

* Briefly describe the bugs in the DACFTL

* Quantitatively show that the speed and scalability of stress
tests are important

Cassign hew pg>

end of block: N

Y
summarize the block

garbage collection
]

Y
pg = blk * N;

C return pg;)

end of block: N

Y

blk = next_bIK();

pg ++;
(retu‘r'n PE,)

)

Cassign hew pg>

end of block: N

Y
summarize the block

Y

J
\

garbage collection
]

end of block: N

Y

Garbage-collection
watermark is too tight.

FTL sometimes gets stuck

because run out of free
blocks.

blk = next_bIK();

1 P |

(retu‘r'n PE,)

Cassign hew pg>

end of block: N

Y
~ | summarizethe block

-
-

AN Y
AN garbage collection
]

\

<
«

Y
pg = blk * N;

C return pg;)

\\\ end of block: N

. Y
Forget to summarize .
the block ! yk — né;<t_blk();

»
\ 4 ggg

pg ++;

(retu‘r'n PE,)

i . N

(blk != pg / N) seems to l

imply that a new, empty

block is chosen.

2N AN\

It fails to consider a case

that a block is erased and

immediately chosen to be

written.

pg = blk* N;

C return pg;)

end of block: N

Y

blk = next_bIK();

is_erased(blk)?

pg ++;

(retu‘r'n PE,)

Cassign hew pg>

end of block: N

Y
summarize the block

Y

pg = blk* N;

The FTL skips the first
page in a block when
the SSD is powered up
; for the first time.

Violate the sequential
write rule.

C return pg;)

pg ++;

/

- TRT?
Y

(retu‘r'n PE,)

assign_new_write_vpn(...)

{

if (write_pg == the last page of a blk) {

summarize the block;

while (free blk cnt() < NUM_REGIONS+1) é;égg!

| garbage_collection();

} \N

if (write_pg != the last page of a blk) {
arite pg ++;

€ These four bugs have

lurked inside the FTL for
many years!

* Speed and scalability
advantages of VST are very
helpful for us to discover

} while ('15 erased(blk)),

}

if (blk != write_ vpn/PAGES PER_BLK) %
write pg = blk * PAGES PER BLK;

return write_ pg;

N bugs.

29

Importance of Testing Speed and Scalability

* Only 6/16 traces
can trigger the bug

* Simply writing 1TB
of data into an SSD
may overlook this
bug

* Fast and scalable
stress tests can
help engineers to
be aware of a bug
earlier

W
w »

RW to Trigger the Bug (TB)
©
o

B The bug occurs

[The bug does not occur at all

pass pass
2 Pass
pass
pass 5 pass
pass pass| | Pass — =
1 M e oPgeo
e e 2
5
-
s |
o © © o © N © N O o o o o
» "~ L — v e
TEEE &L oR* 399
E & o o o wn o v wn g S

30

VST's Strength in High Speed

* Single core o 113 GB/s
* Three FTLs 100 |
* VST achieves 56113 GB/s g ® |

on average 5 © |

* >100X real SSD speed o 40|
* 0.5~ 1GB/s |

S

Greedy DAC FASTer

31

VST's Strength in High Scalability

* Multiple VSTs can execute in parallel on PCs or servers
* Stress tests is thus easily scalable

383 GB/s
400
B Greedy ODAC mFASTer
350
& 300
72 250
= & 218 GB/s
QD ~—
2 =200
c O
ap U
O 9 150
% & 113 GB/s
2 100
h |
0
1 2 4

Number of VST Instances

Conclusions

* VVirtual Stress Test
 Stress testing FTLs without real SSDs

* Enhance the SSD/FTL design flow

* High speed: up to 383 GB/s stress tests, which surpasses SSD and
flash speed

* High scalability: a massive number of stress tests can easily be
instantiated

e Reproducing and investigating failed tests on VST are relatively
easy

* We apply VST to OpenSSD and discover seven new bugs

VST: A Virtual Stress Testing Framework for
Discovering Bugs in SSD Flash-Translation Layers

THANK'Y

