VST: A Virtual Stress Testing Framework for Discovering Bugs in SSD Flash-Translation Layers

Ren-Shuo Liu, Yun-Sheng Chang, Chih-Wen Hung

System and Storage Design Lab Department of Electrical Engineering

National Tsing Hua University, Taiwan

Our Contributions — Virtual Stress Test (VST)

- Stress test SSD firmware without using real SSDs
- Enhance SSD firmware design flow
 - Fast stress tests surpassing SSDs' speed limitations
 - Scalable stress tests without a need of a large number of SSDs
 - Ease reproducing and investigating failed tests
- We apply VST to a real SSD project, OpenSSD, and VST helps us to discover seven new firmware bugs
 - A solid evidence of VST's bug-discovering effectiveness

Outline

- Background
- Challenges and our contributions
- Virtual Stress Test design
- Evaluation
- Conclusions

NAND Flash-Based SSDs (Solid State Drives)

- SSD is an important storage technology now
 - Mobile, laptop, desktop, and server computers
- SSDs' advantages over hard disk drives

 - Smaller form factors
 - Superior access speed
 Lower power consumption
 - Complete shock resistance

NAND Flash-Based SSDs (Solid State Drives)

Organization of an SSD

- Controller (1~8 buses)
- Bus (2-8 flash chips)
- Chip (~4096 flash blocks)
- Block (128-512 flash pages)
- Page (4-32KB)

Flash Translation Layer (FTL)

- The firmware in every SSD
- Basic FTL functions
 - Translate host requests to flash read, write, and erase operations
- Many advanced FTL mechanisms are proposed to improve FTL
 - Wear leveling
 - Hot-cold data separation
 - Dynamic write allocation

Outline

- Introduction and background
- Challenges and our contributions
- Virtual Stress Test design
- Evaluation
- Conclusions

Challenges

- The pursuit of advanced FTL mechanisms increase FTL complexity
- More complex firmware are more prone to have bugs
- FTL bugs can lead to unacceptable and unrecoverable errors such as data and capacity losses

Challenges

- Real SSD-based stress test is the common practice to discover FTL bugs
 - Generates intensive read and write requests to an SSD
 - FTL is probably buggy if abnormal behaviors present, such as
 - Request timeout
 - SSD disconnection
 - Data comparison mismatch

Challenges

- Real SSD-based stress test is and will still be necessary
- However, it has drawbacks
 - Speed is limited by SSD hardware (e.g., flash memory)
 - Scalability is limited by the number of SSDs prepared
 - Reproducing a failed test can be difficult
 - Investigating a failed test needs expensive equipment (e.g,. a JTAG debugger)

Our Solution — Virtual Stress Test (VST)

VST vs. Traditional Stress Tests

	VST	Traditional Stress Tests	
Speed	Native PC and server speed	Limited by SSD hardware	
Scalability	Multi-sever and multi-core parallelism	Limited by the num. of SSDs	
Reproducing a failed stress test	Critical bugs can 100% guarantee only appear once!		
Investigating a failed stress test	Software debugging tools	Complicated and expensive equipment	

Outline

- Background
- Challenges and our contributions
- Virtual Stress Test design
- Evaluation
- Conclusions

Naïve Flash Memory Emulation

emulate 1 GB flash using 1 GB DRAM

VST's Flash Memory Emulation

Outline

- Introduction and background
- Challenges and our contributions
- Virtual Stress Test design
- Evaluation
 - Discovered bugs
 - Testing speed
- Conclusions

Experimental Setup

- Three OpenSSD FTLs
 - Greedy, DAC, FASTer
- 16 write-intensive disk traces
 - Each contains 1TB write amount
- Desktop computer
 - Intel i7 3.6GHz 4-core CPU
 - 32GB DRAM

Name	Write		Read	
	#Requests (M)	Tot. Size (TB)	#Requests (M)	Tot. Size (TB)
hm_0	78	1	43	0.5
mds_0	87	1	12	0.3
prn_0	67	1	8	0.2
proj_0	23	1	3	0.1
prxy_0	91	1	3	0.0
prxy_1	60	1	113	1.8
rsrch_0	80	1	8	0.1
src1_0	18	1	28	1.1
src1_2	28	1	9	0.2
src2_0	90	1	11	0.1
src2_2	18	1	8	0.6
stg_0	77	1	14	0.4
ts_0	85	1	18	0.3
usr_0	69	1	47	2.0
wdev_0	84	1	21	0.3
web_0	79	1	34	1.1

Bug Detection Results

- Seven new bugs are discovered
 - Four in DAC FTL
 - Two in Greedy FTL
 - One in the FASTer FTL
- Briefly describe the bugs in the DAC FTL
- Quantitatively show that the speed and scalability of stress tests are important


```
assign_new_write_vpn(...)
                                                    • These four bugs have
if (write pg == the last page of a blk) {
                                                      lurked inside the FTL for
    summarize the block;
                                                      many years!
    while (free_blk_cnt() < NUM_REGIONS+1)</pre>
        garbage collection();

 Speed and scalability

                                                      advantages of VST are very
    if (write pg != the last page of a blk) {
        write pg ++;
                                                      helpful for us to discover
      si return write_vpn;
                                                      bugs.
        blk = Nxt blk();
      while (!is erased(blk));
if (blk != write vpn/PAGES PER BLK)
    write_pg = blk * PAGES_PER_BLK;
  else {
    write_pg ++
return write pg;
```

VS

Importance of Testing Speed and Scalability

- Only 6/16 traces can trigger the bug
- Simply writing 1TB of data into an SSD may overlook this bug
- Fast and scalable stress tests can help engineers to be aware of a bug earlier

VST's Strength in High Speed

- Single core
- Three FTLs
- VST achieves 56~113 GB/s on average
- >100X real SSD speed
 - 0.5 ~ 1GB/s

VST's Strength in High Scalability

- Multiple VSTs can execute in parallel on PCs or servers
- Stress tests is thus easily scalable

Conclusions

- Virtual Stress Test
 - Stress testing FTLs without real SSDs
- Enhance the SSD/FTL design flow
 - High speed: up to 383 GB/s stress tests, which surpasses SSD and flash speed
 - High scalability: a massive number of stress tests can easily be instantiated
 - Reproducing and investigating failed tests on VST are relatively easy
- We apply VST to OpenSSD and discover seven new bugs

VST: A Virtual Stress Testing Framework for Discovering Bugs in SSD Flash-Translation Layers

